"Unofficial Conformed Contract Specifications are for use by the Boston Harbor Project Construction Management staff only and are provided solely for information purposes."


# SUBSURFACE EXPLORATION 

## CONTRACT DOCUMENTS

## FOR

## INTER-ISLAND TUNNEL

CONTRACT PACKAGE NO. 151
DEER ISLAND
BOSTON, MASSACHUSETTS

MWRA CONTRACT NO. 5541
EPA NO. C 259713-18
FOR
MASSACHUSETTS WATER RESOURCES AUTHORITY

by

SVERDRUP CORPORATION
BOSTON, MAESACHUSETTS

Jacobs Associates San Francisco, CA

Goidberg - Zoino \& Assoc. Newton Upper Falls, MA

Delon Hampton \& Assoc.
Rockville, MD

## TABLE OF CONTENTS

Page
1.00 INTRODUCTION ..... 1
1.10 GENERAL ..... 1
1.20 PURPOSE AND SCOPE ..... 2
1.30 PARTICIPANTS ..... 3
2.00 PROJECT DESCRIPTION ..... 5
2.10 OVERVIEW ..... 5
2.20 EXISTING GENERAL SITE CONDITIONS ..... 7
2.30 SHAFT CONSTRUCTION ..... 7
2.31 North Shaft (on Deer Island) ..... 7
2.32 South Shaft (on Nut Island) ..... 8
2.40 TUNNEL CONSTRUCTION ..... 9
2.50 OTHER STRUCTURES ..... 9
3.00 GEOLOGIC SETTING ..... 11
3.10 OVERVIEW OF THE BOSTON BASIN REGIONAL SETTING ..... 11
3.20 GEOLOGIC ORIGIN OF SOILS ..... 13
3.30 GEOLOGIC ORIGIN OF BEDROCK ..... 15
4.00 SUBSURFACE CONDITIONS ..... 18
4.10 GENERAL ..... 18
4.20 SOIL CONDITIONS ..... 18
4.21 North Shaft ..... 18
4.22 South Shaft ..... 20
4.23 Tunnel ..... 21

TABLE OF CONTENTS (CONT 'D)
Page
4.30 BEDROCK CONDITIONS ..... 22
4.31 North Shaft ..... 22
4.32 South Shaft ..... 23
4.33 Tunnel ..... 24
4.33.1 Stratigraphy and Structure ..... 24
4.33.2 Bedding Planes and Discontinuities ..... 28
4.33.3 Intact Rock Properties ..... 29
4.40 GROUNDWATER ..... 32
4.41 North Shaft ..... 32
4.42 South Shaft ..... 34
4.43 Tunnel ..... 34
4.44 Groundwater Quality ..... 35
4.50 SEISMICITY ..... 35
4.60 GASES ..... 36
5.00 GEOTECHNICAL ENGINEERING CONSIDERATIONS ..... 37
5.10 OVERVIEW ..... 37
5. 20 NORTH SHAFT ..... 39
5.21 General ..... 39
5.22 Geotechnical Design Parameters ..... 39
5.22.1 Shaft structures ..... 41
5.22.2 SSPS Conduit ..... 42
5.22.3 Surge Storage Structure ..... 42
5.22.4 Surge Storage Structure Conduit ..... 43
5.23 Shaft Excavation in Soil and Rock ..... 43
5.24 Temporary Lateral Support in Soil - Shaft ..... 44
5.25 Groundwater Control - Shaft ..... 48
5.26 Design of Permanent Lining - Shaft ..... 49

## TABLE OF CONTENTS (CONT'D)

Page
5.27 SSPS Conduit ..... 49
5.28 Surge Storage Structure ..... 50
5.29 Instrumentation ..... 51
5.30 SOUTH SHAFT ..... 52
5.31 General ..... 52
5.32 Geotechnical Design Parameters ..... 53
5.32.1 Shaft Structures ..... 53
5.32.2 Nut Island Conduit ..... 53
5.33 Shaft Excavation in Soil and Rock ..... 54
5.34 Temporary Lateral Support in Soil Shaft ..... 54
5.35 Groundwater Control - Shaft ..... 55
5.36 Design of Permanent Lining - Shaft ..... 55
5.37 Nut Island Conduit ..... 56
5.38 Instrumentation ..... 56
5.40 INTER-ISLAND TUNNEL ..... 56
5.41 General ..... 56
5.42 Vertical and Horizontal Tunnel Alignment ..... 57
5.43 Excavation ..... 58
5.44 Rock Support Requirements ..... 60
5.45 Groundwater Control ..... 65
5.46 Design of Permanent Lining ..... 67
5.47 Long Island Drop Shaft ..... 69
5.50 SEISMIC DESIGN CONSIDERATIONS ..... 69
5.51 Shafts ..... 70
5.52 Tunnel ..... 70
5.60 DISPOSAL AND USE OF EXCAVATED MATERIALS ..... 71
REFERENCES ..... 73

## APPENDICES

APPENDIX A SUMMARY BORING LOGS

## TABLE OF CONTENTS (CONT'D)

Page
tables

| TABLE NO. 3.1 | STRUCTURES ALONG INTER-ISLAND <br> TUNNEL ALIGNMENT | 12 |
| :--- | :--- | :--- |
| TABLE NO. 4.1 | SUMMARY OF UNCONFINED COMPRESSION <br> TESTS | 31 |
| TABLE NO. 4.2 | SUMMARY OF ROCK HARDNESS DATA | 32 |
| TABLE NO. 5.1 | LATERAL PRESSURE DESIGN PARAMETERS | 40 |
| TABLE NO. 5.2 | ESTIMATES OF LATERAL AND HORIZONTAL <br> DISPLACEMENT DUE TO SHAFT CONSTRUCTION | 52 |
| TABLE NO. 5.3 | TUNNEL ROCK LOADING |  |

TABLE OF CONTENTS (CONT'D)
Following Page

## FIGURES

FIGURE NO. 1.1 PROJECT LOCATION PLAN 1
FIGURE NO. 2.1 DEER ISLAND SITE LOCATION PLAN 7
FIGURE NO. 2.2 NUT ISLAND SITE LOCATION PLAN 7
FIGURE NO. 3.1 TECTONIC MAP OF THE BOSTON BASIN 12
$\begin{array}{ll}\text { FIGURE NO. } 3.2 & \begin{array}{l}\text { TECTONIC MAP OF BOSTON BASIN AND } \\ \text { BLUE HILLS }\end{array}\end{array}$
FIGURE NO. 4.1 BORING LOCATION PLAN 18
FIGURE NO. 4.2 BORING LOCATION PLAN 18
FIGURE NO. 4.3 BORING LOCATION PLAN 18

| FIGURE NO. 4.4 | $\begin{array}{l}\text { SUBSURFACE SECTION AT NORTH } \\ \text { SHAFT }\end{array}$ |
| :--- | :--- |

FIGURE NO. 4.5 $\begin{aligned} & \text { SUBSURFACE SECTION AT SOUTH } \\ & \text { SHAFT }\end{aligned} 20$
FIGURE NO. 4.6 SUBSURFACE PROFILE ALONG TUNNEL 21
FIGURE NO. 4.6A NOTES AND LEGEND FOR FIGURES 4.6. $4.7 \& 4.8$21

FIGURE NO. 4.7 SUBSURFACE PROFILE ALONG TUNNEL 21
FIGURE NO. 4.8 SUBSURFACE PROFILE ALONG TUNNEL21

FIGURE NO. 4.9 ROCK DISCONTINUITIES OF SHAFT BORING LDE-4623

FIGURE NO. 4.10 ROCK DISCONTINUITIES OF SHAFT BORING LDE-5823

FIGURE NO. 4.11 PRIMARY \& SECONDARY BEDDING PLANES

TABLE OF CONTENTS (CONT'D)
Following Page
FIGURE NO. 4.12 PRIMARY \& SECONDARY DISCONTINUITY ORIENTATIONS ..... 28
FIGURE NO. 5.1 LATERAL PRESSURE FOR NORTH AND SOUTH SHAFTS ..... 41
FIGURE NO. 5.1A NOTES AND DEFINITIONS FOR FIGURES 5.1 , 5.2 \& 5.3 ..... 41
FIGURE NO. 5.2 LATERAL PRESSURE FOR SURGE STORAGE STRUCTURE AT DEER ISLAND ..... 42
FIGURE NO. 5.3 LATERAL PRESSURE FOR CONNECTING CONDUIT AT SOUTH SHAFT ..... 54
FIGURE NO. 5.4 ROCK QUALITY DATA ..... 63
FIGURE NO. 5.5 ROCK QUALITY DATA ..... 63
FIGURE NO. 5.6 ROCK QUALITY DATA ..... 63
FIGURE NO. 5.7 ROCK RATINGS ALONG TUNNEL ALIGNMENT ..... 63
FIGURE NO. 5.8 TUNNEL SUPPORT SYSTEMS TYPE I, II, ..... 64 III \& IV

### 1.10 GENERAL

The Massachusetts Water Resources Authority (MWRA) has undertaken a program to design and construct a secondary wastewater Treatment Facility on Deer Island in Boston Harbor. The program is generally referred to as the Boston Harbor - Deer Island Related Facility project and consists of constructing new primary and secondary wastewater treatment facilities at Deer Island, a new headworks facility at Nut Island in Quincy, an Inter-Island Tunnel between Nut and Deer Islands, and an outfall Tunnel from Deer Island that will discharge into Massachusetts Bay. Refer to Figure 1.1 for the site location plan.

This Geotechnical Interpretive Report describes the geotechnical aspects of the Inter-Island Tunnel and shafts and related structures. It discusses the geologic setting, subsurface conditions, geotechnical issues, and also provides interpretations of the geotechnical data, with respect to design and construction. Two companion documents, entitled "Geotechnical Data Report" and "Geotechnical Design Summary Report" have also been prepared by the PDE. The first report is a presentation of data without interpretation and the latter is a summary of design and construction assumptions.

Additional reference volumes containing data related to this project include:

- "Rock Properties - Secondary Treatment Plant, Deer Island", by New England Research, Inc., January 16, 1989.
- "Boston Harbor Seismic Survey", by Weston Geophysical, Corporation, October 28, 1989.
- "Concept Design - Tunnel Corrosion Engineering", by Metcalf \& Eddy, Inc., May 31, 1989.
- "Conceptual Design - Tunnel Seismic Assessment and Design Criteria", by Metcalf \& Eddy, Inc., May 31, 1989.
- "Secondary Treatment Facilities Plan - Volume IV - InterIsland Conveyance System Final Report", by Metcalf \& Eddy, Inc., March 7, 1989.
- "Seismic Design Recommendations", by Weston Geophysical, Corporation, May 1989.
- "Coarse-Grid Marine Geophysical Surveys, Deer Island Secondary Treatment Facility", by Weston Geophysical, Corporation, September, 1988.
- "1988 Marine Drilling Summary Report", by Metcalf \& Eddy, Inc., February 1, 1989.
- "Boston Harbor Geological and Geotechnical References, Volumes I and II", by Metcalf \& Eddy, Inc., May 1989.
- "Conceptual Design, Design Package 5, Inter-Island Tunnel \& Shafts", by Metcalf \& Eddy, Inc., May 31, 1989.
- "Comprehensive Geotechnical Program Report", by Kaiser Engineers, Inc., June 1989.
"Geotechnical Interpretive Report - Tunnels, Shafts and Diffuser, Volumes I to IV", by Metcalf \& Eddy, Inc., June 16, 1989.
"Aquifer Test Interpretive Report, Deer Island", by Metcalf \& Eddy, Inc., November 30, 1989.
"Results of the Multichannel Digital Survey for the Boston Harbor Project Inter-Island Area", by Williamson \& Associates, Inc., May 1990.

These are available for viewing at the Kaiser Engineers, Inc. (Program/Construction Manager, P/CM) library (Schrafft Center, Charlestown, Massachusetts).

All elevations referenced in this report refer to Metropolitan District Commission (MDC) datum; and all invert elevations refer to top of finished concrete.

### 1.20 PURPOSE AND SCOPE

The primary objective of this report is to discuss the Project Design Engineer's (PDE's) interpretation of subsurface conditions and their impact on design and construction of the tunnel, shafts and related structures.

The scope of work performed was as follows:

1. Reviewed existing relevant boring and geophysical subsurface data.
2. Developed a subsurface exploration program for the proposed conveyance tunnel alignment consisting of:

- seventeen borings (14 on water and 3 on land);
- borehole packer pressure tests in 16 of the borings;
- downhole geophysics in four of the borings; and
- a geophysical survey (reflection and refraction) in an area adjacent to Peddocks Island, where previous geophysical surveys and interpretations had suggested that either the top of rock was deep or the rock was of very poor quality.

The primary purpose of the program was to estimate top of rock and to evaluate the nature and quality of the rock that would be encountered during tunnel excavation.
3. Provided personnel to observe and record data during drilling, packer testing and oriented coring.
4. Developed and executed a laboratory testing program on rock samples consisting of:

- unconfined compression tests;
- mineral identification tests (thin-sections);
- total hardness tests; and
- point load tests.

5. Analyzed and interpreted the subsurface data with respect to its impact on design and construction.
6. Prepared three reports: the "Geotechnical Interpretive Report", the "Geotechnical Data Report", and the "Geotechnical Design Summary Report".

### 1.30 PARTICIPANTS

The key members of the Inter-Island Tunnel project team were as follows:

1. The Project Management Division (a department within the MWRA): primarily responsible for transmitting the MWRA's objectives to the Program/Construction Manager and assuring that funding for the investigations was available as needed.
2. The Program/Construction Manager (Kaiser Engineers, Inc. in association with the Maguire Group, Inc. and Howard Needles

Tammen \& Bergendoff): responsible for the day-to-day management of the project and the implementation of the Project Management Division's objectives and expectations.
3. The Lead Design Engineer (Metcalf \& Eddy, Inc. in association with Mott Hay, Inc.): responsible for obtaining information for conceptual design of the tunnel and landbased facilities; developing geotechnical and geophysical design criteria and standards; and managing PDE during detailed design.
4. The Project Design Engineer (Sverdrup Corporation in association with Jacobs Associates, Goldberg-Zoino \& Associates, Inc. and Delon Hampton \& Associates): responsible for implementing the 1989 final design subsurface investigation program; performing detailed design; preparing contract documents; and preparing geotechnical interpretive, data, and design summary reports.


### 2.10 OVERVIEW

In September 1985, the Federal District Court ruled that the current discharge of "primary" treated effluent into the Boston Harbor, by the MWRA, was unlawful. The Court also ordered the MWRA to provide full "secondary" treatment of all wastewaters before disposing them into the harbor. The MWRA responded by developing the Boston Harbor - Deer Island Related Facilities project and proposed a schedule, containing specific dates for completion of particular design and construction elements, which became legally binding in May 1986.

Currently, the MWRA's wastewater collection system consists of a North Metropolitan Sewerage System and a South Metropolitan Sewerage System. North System flows are collected and transported to the Deer Island Primary Treatment plant; South System flows are collected and transported to the Nut Island Primary Treatment Plant. Influent flow enters the Deer Island plant via both the Main Pumping Station and the Winthrop Terminal Headworks. The Main Pumping Station pumps from either of two deep rock tunnels (each approximately 300 feet below sea level)-- the approximately 7 -mile-long Boston Main Drainage Tunnel (peak capacity of 694 mgd ) and the approximately 4 -mile-long North Metropolitan Relief Tunnel (peak capacity of 350 mgd ). The Winthrop Terminal Headworks screens and pumps influent flow from the North Metropolitan Trunk Sewer (125 mgd peak capacity). Influent flow for the Nut Island plant enters via a High Level Sewer (peak capacity of 360 mgd ), which consists of approximately 78 miles of MWRA interceptor sewers. After treatment at each plant, which consists of screening, grit removal, pre-aeration, primary sedimentation and disinfection, the resultant effluent is disposed into the Boston Harbor via a series of short outfalls.

The objective of the proposed MWRA project is to provide primary and secondary treatment of the wastewater conveyed through the MWRA's sewerage collection systems at a single treatment facility to be located on Deer Island. The overall program basically consists of constructing primary and secondary treatment facilities at Deer Island, new headworks (screening and degritting station) at Nut Island in Quincy, a new approximately 25,160-foot-long, 11.5-foot-finished-diameter tunnel to convey South System untreated waste water from Nut Island to Deer Island (Inter-Island Tunnel), and a new approximately 48,000-foot-long, 24.25-foot-finished-diameter outfall tunnel from Deer Island that will discharge into Massachusetts Bay. The new facility will be capable of accepting up to 1.27 billion gallons of waste water per day, removing 85 to 90 percent of the suspended organic
material, and discharging the effluent 8 to 10 miles offshore. Both tunnels are expected to be constructed predominantly in Cambridge Argillite using Tunnel Boring Machines (TBMs).

Design of the overall project has been broken up into more than 18 separate design packages, each of which is associated with a particular unit operation. This report addresses geotechnical design and construction issues for the Inter-Island Tunnel (DP-5) design package. The package consists of:

1. a 230-foot-deep, 16-foot-finished-diameter shaft at Nut Island (South Shaft);
2. a 290-foot-deep shaft, with 16- and 11-foot-finisheddiameters above and below elevation 80 feet, respectively, at Deer Island (North Shaft);
3. a 25,160-foot-long, 11.5-foot-finished-diameter, conveyance tunnel between Nut Island and Deer Island;
4. an approximately 145-foot-long, 11-foot-finished-diameter connecting conduit to the South System pumping station (SSPS) at Deer Island;
5. an approximately 30 -foot-long, 12-foot-square connecting concrete conduit to the Grit Removal Facilities Structure (GRFS) at Nut Island;
6. an approximately 135 -foot-long stub tunnel at the base of the South Shaft, with an approximately 115-foot-long, 3-foot-diameter pipe, for a future connection to the Fore River wastewater treatment plant in quincy;
7. an approximately 30 -foot-deep, 96 -foot by 46 -foot, surge storage structure at Deer Island;
8. two 14-inch-internal diameter sludge pipes, from Deer Island to Nut Island, extending approximately 115 feet beyond the South Shaft and into the stub tunnel for future connection to the Fore River wastewater treatment plant in Quincy;
9. a 12-inch-internal diameter ductile iron pipe drop shaft at Long Island, for screened and gritted wastewater from Long Island Hospital's treatment plant.

The in situ volume of excavated material for the Inter-Island Tunnel and its associated shafts will be approximately 148,000 cubic yards. This will result in an estimated bulked muck volume of approximately 250,000 cubic yards. The estimates are based on assumed average excavated diameters of 13.8 , 19.0 and 26.0 feet for the tunnel, the South Shaft, and the North Shaft, respectively.

Deer Island is connected to the southern tip of Winthrop by a man-made causeway fill. It is approximately 200 acres in area, and its dominant natural feature is a drumlin with a summit elevation of 210 feet. Primary active land uses of this island are the Deer Island House of Correction, owned and operated by the City of Boston, and the MWRA primary treatment facility, which take up a combined total area of approximately 60 acres toward the northern side of the island.

The proposed condition of the construction area after the Early Site preparation Contract is completed is an approximately 74,500-foot-square site levelled to approximately elevation +125 feet (refer to Figure 2.1).

Nut Island, which is a peninsula located on the southern shore of Boston (refer to Figure 2.2), is approximately 17 acres in area, has a flat topography that lies between approximately elevation +125 and +130 feet, and is riprapped at its edges. The site is occupied exclusively by structures associated with the primary treatment facility: tanks are situated at the southern end of the site and major above-grade structures are at the northern end. There is no significant vegetation, and most of the property is covered by either concrete or bituminous pavement.

At the start of DP-5 construction, the condition of this site will be essentially as it exists in December 1989. Pier construction and detour road construction will be completed by others.

### 2.30 SHAFT CONSTRUCTION

Methods of shaft construction through overburden into bedrock will be up to the Contractor with review by the Construction Manager (CM). Anticipated construction sequence procedures and methods are as follows:

### 2.31 North Shaft (on Deer Island)

A. Prior to the General Contractor's arrival on site, existing miscellaneous fill will have been removed from the proposed North Shaft location, by the Early site Preparation Contractor, and replaced with compacted engineered fill up to elevation 125 feet. It is the PDE's understanding that this fill will consist of compacted granular material below the water table and glacial till above.
B. Project mobilization and preparation for shaft sinking.
C. Excavation of soil from the proposed shaft location. This will require a lateral earth support system. The system will probably consist of a concrete diaphragm wall or soil freezing or other possible combinations including ring beam supported liner plates or precast concrete liners with grouting or an appropriate alternative selected by the contractor and reviewed by the CM. Except for ground freezing, some combination of dewatering and/or grouting will be required to control groundwater within pervious near surface and at depth soil zones and the fractured rock/soil interface.
D. Excavation through bedrock, using drill and blast techniques, and installing temporary rock support as specified. Rock support shall include rock bolts, welded wire fabric (WWF) and shotcrete installed primarily to prevent minor rock fragment fallout that might endanger personnel in the shaft.
E. Excavation of an enlarged bottom station area and tail tunnel, using drill and blast techniques, for installation of the TBM and its muck removal equipment.
F. Construction of underground groundwater pumping station, power facilities, muck handling facilities, and hoisting plant.
G. Lining the shaft with cast-in-place concrete, with the two 14-inch-diameter sludge pipes embedded within the concrete lining; constructing the top of shaft; and tying into the SSPS.
2.32 South Shaft (on Nut Island)
A. Mobilization of shaft sinking equipment to the proposed South Shaft location on Nut Island. As the South Shaft needs to be completed early, as required by specifications, it has to be excavated before tunnel excavation is completed.
B. Excavation of soil from the proposed shaft location. This will require a lateral earth support system. The system will probably consist of soldier piles and lagging, ring beam supported liner plates, or an appropriate alternative selected by the contractor and reviewed by the CM. Some combination of steel sheeting, dewatering and/or grouting will also be required to control groundwater within the pervious near surface soil zone and the likely fractured rock/soil interface.
C. Excavation through bedrock, using drill and blast techniques, and installing temporary rock support as specified. Rock support shall include rock bolts, WWF and shotcrete installed primarily to prevent minor rock fragment fallout that might endanger personnel in the shaft.
D. Excavation of the 135-foot-long stub tunnel at the base of the South Shaft, using drill and blast techniques, and providing temporary rock support as specified.
E. Installation into the stub tunnel of the 3-footdiameter wastewater pipe and the two 14-inch-diameter sludge pipes for future connection to the Fore River treatment plant.
F. Lining the shaft with cast-in-place concrete, and constructing the top of shaft.

### 2.40 TUNNEL CONSTRUCTION

Methods of tunnel construction through bedrock will be up to the Contractor with review by the CM. Anticipated construction procedures and methods are as follows:

1. Mobilization of TBM.
2. Tunnel excavation using a TBM and installing appropriate temporary rock support as specified. The tunnel will be excavated up slope from the North Shaft, primarily to allow gravity drainage of groundwater inflows away from the heading.
3. Lining the tunnel with cast-in-place concrete, installing the two 14 -inch-diameter sludge pipes, and backfilling the tail and stub tunnels with concrete.

### 2.50 OTHER STRUCTURES

In addition to the North Shaft, the South Shaft, and the tunnel, related structures are to be constructed. Methods of construction will be up to the contractor with review by the CM. Anticipated construction procedures and methods are as follows:

1. The 11-foot-finished-diameter connecting conduit to the South system Pumping Station (SSPS) at Deer Island will be constructed as a soft ground tunnel using a simple shield and hand-excavation methods. The conduit will be constructed after completion of the SSPS. The PDE assumes that a secondary access shaft will be constructed outside the main shaft to avoid schedule delays.
2. The $\mathrm{DP}-5$ section of the 12-foot-square connecting concrete conduit to the Grit Removal Facilities Structure at Nut Island will probably be constructed using steel sheeting driven into silty clay as a cut-off. It would also be feasible to construct it with soldier piles and lagging in combination with a systematic dewatering system.
3. Soldier piles and lagging or steel sheeting will probably be the lateral soil support system selected for construction of the approximately 30 -foot-deep, 96 -foot by 46 -foot surge storage structure at Deer Island. The storage structure will be constructed either in conjunction with shaft excavation or as a separate operation later, at the Contractor's option.
4. The 12-inch-diameter drop shaft at Long Island will probably be drilled, cased and capped prior to tunnel excavation. Drilling through overburden will be performed using slurry (drilling mud) or other appropriate means of temporary support.



### 3.10 OVERVIEW OF THE BOSTON BASIN REGIONAL SETTING

Southeastern New England lies astride the eastern border of the Appalachian orogenic belt. This border represents a zone of late-Precambrian and early-Paleozoic collision between paleoNorth American and Paleo-African plates, and now forms the Nashoba Thrust Belt (Barosh, 1984). This zone passes west and northwest of Boston.

Boston is located near the center of the Boston Basin, an east-northeast-trending, triangular-shaped, downfaulted, body of sedimentary-volcanic rock. It is bounded to the north and west by the Northern Border fault and to the south by the Norfolk Basin and Ponkapoag Fault. Onshore, the basin is widest along the coast, where it measures approximately 15 miles, north to south. Offshore, it extends to the east under Massachusetts Bay, where it appears to widen still more (Kaye, 1982). On the west, the basin tapers to a point approximately 18 miles west-southwest of Boston.

Most of the basin is covered by surficial materials consisting predominantly of glacial deposits (Pleistocene in age) which attain a maximum thickness of approximately 300 feet in a few places under the Charles River Basin. Overlying the glacial deposits are recently (Holocene) deposited alluvium, reworked sand and gravel, reworked marine clay, organic silt/peat, and miscellaneous fill materials.

Underlying the glacial deposits are a series of interlayered sedimentary rocks intruded by igneous rocks, mainly diabase. The sedimentary rocks can be divided into three main facies: coarsegrained (conglomerate and sandstone), fine-grained (argillite) and a mixed facies consisting of maroon and green tufaceous siltstone and sandstone. Traditionally, these sedimentary rocks have been called the Boston Bay Group and have been given formational names: Roxbury Conglomerate and Cambridge Argillite.

The upper formation (the Cambridge Argillite) occupies the northern half of the basin and overlies the Roxbury Conglomerate in the southern half. It is characterized by laminated bedding with alternating layers of light gray, sandy and dark gray, clayey argillite. Thicker beds up to about 3 feet also occur, and the composition occasionally grades to sandstone.

The lower formation, the Roxbury Conglomerate, has been traditionally subdivided into three members which are, in descending order: the Squantum Tillite, the Dorchester Shale, and the Brookline Conglomerate. The uppermost member is a poorly-
sorted, non-calcareous sedimentary rock with a wide variety of grain sizes (Kaye, 1984). The Dorchester Member is predominantly argillite, with some sandstone and conglomerate; and the Brookline Member is primarily conglomerate, with argillite, sandstone, and basalt.

Underlying the Cambridge Argillite and Roxbury Conglomerate formations are fine-grained volcanic rocks belonging to the Lynn and Mattapan formations. These units are similar lithologically, but are named for their location geographically (Lynn is to the North, Mattapan to the south).

Recent work (Kaye, 1984) indicates that the above simple stratigraphic concept of a layered sequence of decreasing age does not properly portray the complex relations of different facies. This is primarily because the same rock types may have been deposited at different times, and units change composition laterally.

The strike of bedding in the Boston area is typically east-west, but can be oriented in virtually any direction due to local structural changes. In bedrock tunnels, where numerous measurements have been made, strikes range from N65W to N90W and N60E to N90E. According to Rahm (1962) and Kaye (1980), minor folding produces local strikes in a northerly direction.

The structure of the basin is comprised of a series of broad folds with wavelengths on the order of 3 miles (Billings, 1976). However, due to limited subsurface data and differences in geologic interpretation, the number and location of these folds is uncertain. Structural features that intersect the proposed tunnel alignment are shown on Table 3.1 and in Figures 3.1 and 3.2. According to Kaye (1984), three folds will intersect the proposed Inter-Island Tunnel, and according to Billings, two folds will intersect the tunnel.

TABLE 3.1
Structures Along Inter-Island Tunnel Alignment

|  | Billings, 1976 | Kaye, 1984 |
| :--- | :--- | :--- |
| Folds: | Central Anticline <br> Wollaston Syncline | Hull Syncline <br> Brewster Syncline <br> Central Anticline |
| Faults: | Mount Hope Fault <br> Neponset Fault | Squantum Fault <br> Long Island Fault <br> Peddocks Island Fault <br> Unnamed Fault (Trends N-NW) |

Within the basin, a series of east-northeast trending regional faults dissect the basin into a series of fault blocks. Each block has a fold (anticline, syncline, or homocline), and the average spacing between faults is approximately 500 feet, measured in any direction (Kaye, 1982). Recent mapping by Kaye (1980) indicates that at least eight of these longitudinal faults are 9 miles or more in length. To complicate matters further, the rocks are broken by a complex of later faults, most of which are transverse to the longitudinal faults. The longitudinal faults are mostly high-angle reverse in nature. On many of the transverse faults, slickensides on fault surfaces show a strong strike-slip component of movement. The structural deformation probably occurred during the Ordovician, Permian, and TriassicJurassic periods.

Most faults observed in the field and described in tunnels are thin, rehealed and show minor displacements. Fault zones are typically only a few inches wide and contain fragments of rock cemented together by subsequent mineralization. Billings (1976) summarized data on 318 minor faults from three bedrock tunnels. The most frequent strikes were N2OE, N10W, and N5OW; and dips were typically 80 to 90 degrees, but as low as 50 degrees.

Shear zones have been observed in several of the Boston area tunnels, such as:

1. The Malden tunnel - 40 shears in the Lynn Volcanics, striking northeast, with a dip of 45 NW , as well as approximately west, with a steep dip to the south.
2. The MBTA Red Line tunnel - shear zones in the argillite, which were oriented east-northeast, parallel to the regional structural trend.
3. The Dorchester tunnel - large shear zone (approximately 4,800 feet wide), oriented nearly north-south, accompanied by altered bedrock, groundwater inflows, and diabase intrusions.

Joints mapped in bedrock tunnels indicate that orientations are variable, but the most prominent sets are approximately northsouth with 80 to 90 degree dips and approximately east-west with 80 to 90 degree dips and 20 to 45 degree dips (bedding planes).

### 3.20 GEOLOGIC ORIGIN OF SOILS

Much of the topography that is in evidence within the basin was formed during glaciation when massive blocks of ice scoured the bedrock surface, eroding the softer sedimentary rocks that underlie the basin, and subsequently depositing glacial materials over most of the bedrock. More resistant igneous and metamorphic rock formed highlands surrounding the area. The glacial deposits
have a maximum thickness of approximately 300 feet in a few places under the Charles River Basin. Most surficial deposits are pleistocene in age and are related to the last glacial epoch which ended in the late Wisconsian, approximately 12,000 years before present (B.P.)(Hanson, 1984). These deposits include till, sand, gravel, silt, and clay, most of which are glaciomarine in origin (Kaye,1982). In addition, recent (Holocene) processes have deposited alluvium, reworked sand and gravel, reworked marine clay, organic silt/peat, and miscellaneous fill over low areas of the basin.

The following are generalized descriptions of these deposits:
Glacial Till - Typically, this is a very dense, unstratified, variable mixture of clay, silt, sand, gravel, cobbles, and occasional boulders. Till thicknesses typically range between 5 and 30 feet and grain-size distribution curves usually indicate a widely graded material with 10 to 25 percent or more of the grains finer than a No. 200 sieve (Johnson, 1989). As the clasts in the till were moved and deposited by ice rather than water, they are angular to subangular in shape. Some till deposits directly overlie bedrock whereas others overlie older sands, gravels and clays.

Marine clay - This is glacial rock flour deposited in a quiet marine environment, without the characteristic graded bedding and varves of a lacustrine deposit. It consists of clay-size particles but becomes sandy or silty locally or is interbedded with thin fine sand layers. The clay unit can be over 200 feet thick and is composed primarily of illite, with some chlorite and a little mixed-layered smectite/illite (Kaye, 1979).

Outwash - This unit consists of medium dense deposits that range from stratified coarse gravel through interbedded sand and clay to well-bedded silty clay and silt. The unit was deposited by meltwater streams during retreat of the ice front.

Organic Deposits - As the last glacial epoch waned, there was a drop in sea level. Coastal and nearby lands emerged as salt and freshwater marshes, and poorly drained meadowland, dotted with ponds (Kaye, 1982). Vegetation became established and pond deposits began to collect in these areas. When the sea level began to rise again, approximately 2,000 years later (Kaye, 1982), the vegetation was buried beneath the bay muds, rich in marine life, forming the soft to medium dense, dark brown to black, fine to coarse grained sands which are interbedded with organic silt, shells and peat. This unit can be as much as 20 feet thick and is often used as a marker horizon to indicate the base of fill or top of natural ground.

Alluvium - This unit occurs along stream beds and consists of sand, gravel, and silt, with organic silt or peat in areas of poor drainage. The materials were eroded and transported by runoff to the streams during seasonal rainfall.

Reworked Marine Clay - As the glacial ice retreated/melted, crustal rebounding occurred. This produced a negative sea-level movement that exposed the Boston "blue clay" to wave-base erosion and subaerial erosion. Much of the eroded clay has been deposited on the floor of the Boston Harbor (Kaye, 1982).

Reworked Sand and Gravel - In coastal areas, wave erosion and longshore currents are constantly transporting and redepositing surficial materials, mainly glacial sand and gravel deposits. These processes result in the formation of spits and tombolos. Spits are long, narrow ridges of sand and gravel that extend out from the end of a peninsular or island. Tombolos are spits that connect an island to another island or the mainland. The Winthrop and Nantasket barrier beaches are spits (Hanson, 1984) and Yirrel Beach which connects Deer Island to Winthrop is an example of a tombolo (Fitzgerald, 1984). Nut Island (a drumlin) is connected to Great Hill in Quincy (another drumlin) by a tombolo.

The upper 5 to 10 feet of surface deposits on the seafloor, which shift about due to seasonal storms, are also reworked sand and gravel.

Miscellaneous Fill - The fill consists primarily of excavated and redeposited glacial and alluvial deposits, interbedded with bricks, glass, ash, wood, concrete, granite blocks, and other human-generated debris.

### 3.30 GEOLOGIC ORIGIN OF BEDROCK

The Boston Basin contains Precambrian to Middle or Late Cambrian and perhaps Ordovician volcanic rocks (Barosh et al., 1989). The rocks appear to have been deposited in a basin complex that was undergoing active block-faulting. The highest relief and source areas lay to the south and west of the basin. Coarse clasts were deposited closer to the source area in alluvial fans, gravel plains, and gravelly marine shelf environments; and finer clastics and occasional conglomerates (diamictites) were moved by gravity transport processes into a basinal environment. The sedimentary rocks, therefore, consist of detritus that was eroded from surrounding highlands and deposited as interfingering facies (Kaye, 1982). Deep erosion of the source areas and concomitant subsidence of the basin resulted in onlapping of finer clastic facies over coarser facies at the basin margin (Bailey, 1987). consequently, conglomerate, sandstone, argillite and volcaniclastic sediments grade or interfinger into each other
laterally and vertically over short distances. Thin limestones interbedded with argillite and sandstone are also locally abundant.

Very late Precambrian volcanic activity was widespread and occurred in at least six intervals (Barosh et al., 1989). Early eruptions were rhyolitic and later were spilitic and keretophyric. The volcanic rocks occur as flows, flow breccias, explosion breccias, pillow lavas, plugs, necks and diatremes.

Based on telltale evidence of submarine sliding and turbidity currents at many stratigraphic levels, it has been concluded that depositional basin bottoms were unstable. The evidence includes convoluted bedding, intraformational breccia, graded-bedding, and large lenticular slumped masses of pebbly to bouldery mudstone. Kaye (1984) suggests that bottom slumps and slides were probably triggered by earthquakes that originated from volcanic eruptions and block faulting.

The following are generalized descriptions of the main rock types that occur within the Boston Basin rock formations:

Argillite - This is perhaps the most common rock type in the basin. It consists of silt-size particles of quartz, feldspar, seritic, chlorite and kaolinite. Darker argillite contains more sericite and chlorite while the lighter argillite contains more kaolinite (Kaye, 1967). The argillite is typically gray, but purple, purplish brown, tan, and green colors also occur. Kaye (1984) describes some mineralogical variations of argillite which include calcareous argillite interbedded with normal argillite, sideritic argillite, gypsiferous and dolomitic argillite, red argillite, and black argillite.

The argillite is typically hard and well indurated, more consolidated than shale but not fissile like shale. According to Kaye (1979), fresh rock tends to break across bedding planes. When partings do occur along bedding, they have smooth, planar surfaces (Rahm, 1962). Bedding is typically laminated, consisting of alternating 0.1- to 0.2-inch-thick light and dark colored layers. Individual beds generally range in thickness from less than $1 / 16$-inch to 4 inches and can be up to 5 feet thick. The individual beds maintain a rather uniform thickness for many feet or tens of feet (Billings and Tierney, 1964). Grain size can vary locally to sandy or silty. Sedimentary structures such as slump folds, ripple marks and cross beds are common in this unit.

Severe alteration of the argillite (known as kaolinization), which results in a soft, whitish rock or even clay, occurs in random areas of the Boston Basin. Thin-section study shows that the normal minerals of the argillite have been replaced by sericite and kaolinite during the alteration process.

Kaolinization is probably the result of thermo-alteration of the argillite, with an igneous intrusion acting as the catalyst (Kaye, 1967).

Sandstone - This rock consists primarily of sand-size particles of quartz, feldspar (up to 35 percent sodic plagioclase) and rock fragments in a matrix of clay-size sericite, kaolinite and chlorite (Rahm, 1962). Sand fragments are mostly subangular in shape and medium to coarse in size. The color is typically tan, green or reddish.

Conglomerates - This rock is typically gray-green, tan, gray or purple and consists of rounded to subrounded, pebble to cobble size clasts ( 30 to 50 percent (Rahm, 1962)) of felsite, quartzite, granite and basalt in a sandstone matrix (similar to the unit described above). The clasts are 1 to 3 inches in diameter, but can be 12 inches (Tierney et al., 1968). Bedding is sometimes evident from clasts oriented with their long axis parallel (Kaye, 1980). More often, however, the clasts are random and the structure is massive (Tierney et al., 1968; Rahm, 1962; Richardson, 1977).

Tillite/Diamictite - The rock contains clasts of granite, quartzite, felsite, flow-banded volcanics, basalt, slate and siliceous argillite (Bailey, 1976). The clasts are subrounded to subangular in shape and 2 to 24 inches in diameter. The most distinctive characteristics are the poor sorting of clasts and the abundant sand-silt-clay matrix (Bailey, Newman and Genes, 1976).

Diabase - This is the most common intrusive rock in the basin. It is dense, medium to dark gray or greenish gray, and consists of sodium-rich feldspars and mafic silicates (labradorite to oligoclase, dioside, augite, and uralitic amphibole) (Kaye, unpublished). Its most common occurrence is in dikes that cut across other bedrock units.

Basalt - This is another common intrusive in the Boston area and commonly occurs both as a sill and a dike. In the city Tunnel Extension, basalt is described as dark green to yellow green and fine grained. In places, it contains small (0.1- to 0.2-inch) vesicles filled with calcite, epidote and chlorite. Petrographic analyses show that the basalt has been extensively altered to secondary minerals - albite, hornblende, chlorite, epidote, and calcite.

FILE No. U-11305.1


FILE No. U-11305.1


### 4.10 GENERAL

The proposed conveyance tunnel will be constructed entirely within the cambridge formation with a minimum of 70 feet of rock cover. Based on the Rock Mass Rating (RMR), Rock Structure Rating (RSR) and Rock Mass Quality (Q) classification systems (described in Section 5.44) used for evaluation, the rock conditions appear to vary from poor to very good for tunnel construction.

The two shafts at Deer Island and Nut Island will penetrate through soil into bedrock. The soil deposits generally consist of fill underlain predominantly by a dense to very dense mixture of clay, silt, sand, gravel, and boulders (glacial till). As is typical of glacial deposits, the proportion of fine- to coarsegrained material is highly variable. However, isolated pockets and lenses of near-homogeneous fine materials can occur within the till.

A boring location plan is attached as Figures 4.1 through 4.3. Initially, the tunnel alignment was to be a straight line between Nut Island and Deer Island. However, due to the results of a seismic reflection and refraction survey, performed in February 1989 by Weston Geophysical Corporation, the alignment was subsequently altered by adding a dog-leg west of Peddocks Island. Interpretation of the data from this survey and other previous geophysical surveys had indicated the existence of a deep depression in the surface of the rock in an area located between Nut and Rainsford Islands, due west of Peddocks Island.

Summary logs for the borings performed within the proposed tunnel alignment area, during both the 1988 and the 1989 subsurface exploration programs, are attached to this report as Appendix A. The complete 1989 boring logs are included in the "Geotechnical Data Report" which is available for purchase separately.

The following sections describe the generalized subsurface profile along the proposed tunnel alignment and at the two shaft locations. All elevations are based on Metropolitan District Commission (MDC) datum.
4.20 SOIL CONDITIONS

### 4.21 North Shaft

Based on boring LDE-46, which was performed by the LDE, the bedrock at the proposed North Shaft is covered by approximately 134 feet of soil (based on the existing ground surface elevation
of 128 feet at the time of drilling). The generalized subsurface soil conditions are as follows, in descending order from ground surface (refer to Figure 4.4 for profile at shaft):

MISCELLANEOUS FILL: Approximately 16 feet of loose to medium dense, sandy clay, pieces of drywall, wire, oily material, and other materials. The Standard Penetration Resistance (SPT) or N values in this material ranged between 5 and 16.

It is the PDE's understanding that prior to commencement of shaft construction, the miscellaneous fill will have been excavated and replaced (by the Early Site Preparation Contractor) with engineered fill (granular material below the groundwater table and till above) up to approximate elevation 125 feet.

GRAVEL: Approximately 7 feet of dense, fine to medium angular gravel, some fine sand, trace silt. One $N$ value of 38 was obtained in this stratum.

SILT: Approximately 15 feet of loose to dense, brownish gray to gray silt, some ( 20 to 30 percent) fine angular gravel, trace coarse gravel. $N$ values in this stratum were 8 and 45.

GLACIAL TILL: Approximately 68 feet of dense to very dense, brownish gray to gray, clay-silt matrix, some (10 to 30 percent) fine angular gravel, trace coarse gravel. $N$ values ranged from 31 to 129, with values generally being greater than 80 at elevations below 60 feet. No boulders were encountered but cobbles were observed at an approximate elevation of 105.5 to 106 feet. The cobbles are an indication that boulders could be present.

SILTY SAND: Approximately 13 feet of very dense, brown silt and sand, mixed with small fragments of shell. The $N$ values in this stratum were 100 and 108.

BOULDERS: Approximately 15 feet of argillaceous boulders, fragments of argillite, quartzite and igneous rock, cobbles, some fine to coarse gravel, rust staining; with a brown, fine to medium sand layer at elevation 4.3 to -1.2 feet. The sand layer appears to be under hydrostatic pressure and became a "running" sand during drilling.

In boring LDE-46, diabase was encountered below the bouldery deposit. This rock type was encountered at a depth of 134 to 152 feet (elevation -6 to -24 feet) and is a heavily fractured, moderately hard to hard, greenish gray, medium sized crystalline rock, with closely to very closely spaced joints, mostly slickensided joint surfaces, and occasional calcite veins. However, as unweathered to slightly weathered argillite instead of diabase was consistently encountered in the observation well borings (the nearest well was 29.5 feet from LDE-46) for a
groundwater pumping test at LDE-46, as well as in boring LDE-39, approximately 165 feet north of LDE-46, the diabase is probably a dike. Therefore, it may not extend over the entire shaft area.

Index property and grain size analysis tests were performed by the LDE on soil samples from boring LDE-46. The results are attached as Appendix $L$ of the LDE's June 1989 Geotechnical Interpretive Report, Volume III.

### 4.22 South Shaft

Based on boring LDE-58, which was also performed by the LDE, the bedrock at the proposed South Shaft is covered by approximately 95 feet of soil (based on the existing ground surface elevation of 126.2 feet at the time of drilling). The generalized subsurface soil conditions are as follows, in . descending order from ground surface (refer to Figure 4.5 for profile at shaft):

GRANULAR FILL: Approximately 26 feet of medium dense to dense, gray, fine to coarse sand and gravel, trace clay, trace organics. The estimated quantity of the sand and the gravel varies between 10 and 40 percent and between 10 and 50 percent, respectively. $N$ values ranged between 10 and 47.

SILTY CLAY: Approximately 13 feet of very stiff, yellowish brown, silty clay, trace fine sand, with medium plasticity. The N value was 24.

CLAYEY SAND: Approximately 4.5 feet of dense, yellowish brown, clayey sand, trace silt, with a low to medium plasticity. The clay content is estimated to be approximately 30 percent and the fine sand is approximately 45 percent. The $N$ value was 39.

GRAVEL: Approximately 7.5 feet of very dense, brown, fine to coarse gravel, some sand, trace clay. The $N$ value was 120.

GLACIAL TILL: Approximately 44 feet of very dense, gray, clayey fine to coarse gravel, some silt, trace sand, with medium plasticity. The $N$ values ranged between 67 and 129 , with most of them generally greater than 80 . For the till above approximate elevation 55 feet, in boring LDE-69 (approximately 67 feet away from LDE-58), $N$ values range between 42 and 66. The lower $N$ values are probably an indication that there are fewer boulders and/or cobbles within that zone of LDE-69.

Underlying the till, from a depth of approximately 95 to 313 feet (elevation 31 to -187 feet), is slightly weathered, moderately hard, gray, argillite with interbeds of sandy argillite and occasional calcite veins.

Index property and grain size analysis tests were performed by the LDE on soil samples from boring LDE-58. The results are attached as Appendix $L$ of the LDE's June 1989 Geotechnical Interpretive Report, Volume III.

### 4.23 Tunnel

As the tunnel will be constructed entirely within rock, the characteristics of the surficial deposits overlying bedrock along the proposed tunnel alignment are not of great concern. Consequently, during the 1989 boring program, only a limited number of samples of surficial deposits were obtained. However, the soil/rock interface elevation in all borings was recorded.

Dense marine silty clay and glacial till were the primary deposits encountered along the proposed conveyance tunnel alignment. The generalized subsurface soil conditions along the alignment are as follows, in descending order from ground surface or seabed (refer to Figures 4.6 through 4.8 for profile):

RECENT SEDIMENTS: Approximately 0 to 10 feet of very loose, dark grey to black, sand and/or silt, some clay, trace organics. Boring 89-103 which was performed on land had approximately 9 feet of miscellaneous fill consisting primarily of construction debris such as concrete.

GRAVEL AND/OR SILT: Approximately 0 to 29 feet of loose to dense, fine to medium gravel and/or silt, and some sand.

SILTY CLAY: Approximately 0 to 99 feet of soft to very stiff, gray to yellowish brown silty clay, trace fine sand, with medium plasticity.

GLACIAL TILL: Approximately 6 to 104 feet of dense to very dense, gray sand and gravel, with various quantities of cobbles, silt and clay or hard, gray, clayey silt, with varying quantities of cobbles, gravel, and sand.

The till is generally underlain by Cambridge Argillite. Exceptions are boring 89-116 which is underlain by approximately 60 feet of very dense, grayish-orangish brown, fine to coarse sand, little silt; and boring 89-117 which is underlain by approximately 20 feet of very dense, orange/brown, boulders, cobbles, gravel and sand. The characteristics of the argillite are given in the next section of this report.

### 4.30 BEDROCK CONDITIONS

### 4.31 North Shaft

Below the surficial deposits at the proposed North Shaft location, boring LDE-46 encountered the following rock formations, in descending order (refer to Figure 4.6):

Diabase: This formation was encountered at a depth of 134 to 152 feet (elevation -6 to -24 feet) and is a heavily fractured, moderately hard to hard, greenish gray, medium sized crystalline rock, with closely to very closely spaced joints, mostly slickensided joint surfaces, and occasional calcite veins. Drilling core recovery ranged between 90 and 100 percent, and RQDs generally ranged between 50 and 60 percent.

Note that as several observation well borings (the nearest was 29.5 feet away from LDE-46) which were installed for a groundwater pumping test at this location did not encounter the diabase. It is therefore probably a dike. These other borings encountered unweathered to weathered argillite. Boring LDE-39, which is approximately 170 feet north of LDE-46, encountered a medium hard, light gray, unweathered, argillite, with thin and slumped bedding, and occasional calcite veins. Consequently, both diabase and argillite should be expected at this elevation.

Argillite: This formation was encountered at a depth of 152 to 409 feet (elevation -24 to -280 feet) and is slightly weathered, moderately hard, light gray to gray, with occasional calcite veins, typically 35 to 45 degrees opposite bedding. The results of borehole geophysics indicate that there may be some alteration at the contact with the diabase.

Drilling core recovery was generally between 93 and 100 percent (average of 97 percent). RQDs generally ranged between 20 and 75 percent from approximate elevation -24 to -37 feet (area closest to the diabase) and between 83 and 100 percent from elevation -37 to -281 (average of 86 percent). Very few fracture zones were encountered and those present range in thickness from 0.2 to 1.3 feet. All fracture zones appear to be above elevation -80 feet. Below elevation -80 feet, joints are typically widely spaced. Many of the joints are bedding plane separations. Some of the joints were detected by the geophysical logging performed at the site (Appendices $M$ and $P$ of the LDE's 1989 Geotechnical Interpretive (GI) Report, Volume IV).

Oriented core accounted for approximately 50 percent of the core recovered from this boring. The oriented core data indicate that the bedding at the location is highly variable with most of the rock exhibiting slump features below elevation -130 feet.

Orientations of primary and secondary bedding planes and discontinuities for boring LDE-46 have been plotted on Figure 4.9. These data were obtained from oriented rock cores taken by the LDE at select intervals during drilling. A goniometer was used to obtain the strike and dip orientation. Based on the plots, primary bedding planes dip 22 to 48 degrees, at N359 to N033 , and secondary bedding planes dip 30 to 64 degrees, at $N 315^{\circ}$ to $N 358^{\circ}$. Discontinuity orientation appears to be more variable with primary discontinuities dipping 7 to 77 degrees, at $\mathrm{N} 289^{\circ}$ to $\mathrm{N} 066^{\circ}$, and secondary discontinuities dipping 7 to 70 degrees, at $N 222^{\circ}$ to $N 358^{\circ}$.

Seismic reflection and refraction survey data indicate variable bedrock velocities ( 13,000 to $16,000 \mathrm{ft} / \mathrm{sec}$.) and top of rock elevations. Furthermore, a southeast trending bedrock trough, with a low point of elevation -35 feet, which is near an area of low velocities, suggests that there may be a fault or shear zone in the vicinity of the proposed shaft. Downhole velocities of the material near the boring are approximately $14,500 \mathrm{ft} / \mathrm{sec}$. However, the velocity of the material in the bottom of boring LDE-46 is irregular due to the number of water bearing fractures. Refer to Appendices $E$ and $M$ of the LDE's 1989 GI Report, Volumes II and IV.

### 4.32 South Shaft

Below the surficial deposits at the proposed South Shaft location, boring LDE-58 encountered the following rock formations, in descending order (refer to Figure 4.8):

Argillite: This formation was encountered at a depth of approximately 95.3 to 313.0 feet (elevation 30.9 to -186.8 feet) and is slightly weathered, moderately hard, gray, with interbeds of sandy argillite and occasional calcite veins, typically 40 to 60 degrees and 20 to 30 degrees opposite bedding. Within this formation, there is a slightly weathered, hard, green felsite sill at a depth of 262.9 to 263.4 feet (elevation -136.7 to -137.2 feet); and at a depth of 297 to 313 feet (elevation -170.8 to -186.8 feet), the argillite becomes tuffaceous and is interbedded with argillite.

Drilling core recovery was generally between 83 and 100 percent (average of 97 percent). RQDs generally ranged between 78 and 100 percent (average of 93 percent). A fracture zone, 45 to 60 degrees, was observed at a depth of 174.1 to 175.9 feet (elevation -47.9 to -49.7 feet) and a broken zone was observed at a depth of 202.2 to 202.4 feet (elevation -76.0 to -76.2).

Orientation data for boring LDE-58 plotted on Figure 4.10 indicate that primary bedding planes dip 80 to 84 degrees, at $\mathrm{N} 317^{\circ}$ to $\mathrm{N} 330^{\circ}$, and secondary bedding planes dip 50 to

70 degrees, at $\mathrm{N} 180^{\circ}$ to $\mathrm{N} 195^{\circ}$. Primary discontinuities dip 52 to 55 degrees, at $N 000^{\circ}$ to $N 007^{\circ}$, and secondary discontinuities dip 2 to 46 degrees, at $N 155^{\circ}$ to $N 288^{\circ}$.

A land-based seismic refraction survey performed by Weston Geophysical indicates that the argillite is of good quality with bedrock velocities of 16,000 to $17,000 \mathrm{ft} / \mathrm{sec}$. (Appendix E of the LDE's 1989 GI Report, Volume II). The survey was performed on both Nut Island and Deer Island and consisted of approximately 17,900 feet of seismic refraction profiling.

Diabase: This formation was encountered at a depth of approximately 313 to 351 feet (elevation -186.8 to -224.8 feet) and is a slightly weathered, moderately hard, yellowish green to gray, fine to medium sized crystalline rock, with occasional to some yellow/green epidote veins, and occasional to some calcite and quartz veins cutting epidote veins. The contacts with the argillite are brecciated and irregular. Drilling core recovery was 100 percent and RQDs generally ranged between 82 and 97 percent.

Argillite: The lower 78.4 feet (elevation -224.8 to -303.2) of the boring consists of a slightly weathered, moderately hard, gray, argillite, with occasional to numerous hairline calcite veins at various angles. Thin, greenish gray, fine-grained, felsite sills ( 0.5 to 8 feet thick) and dikes are located within this formation at elevations of approximately -227.8 to -230.0, -235.5 to $-242.3,-277.3$ to -284.8 , and -287.5 to -296.8 feet. Contacts with the argillite are generally brecciated, as if intruded. Drilling core recovery was generally 100 percent. RQDs generally ranged between 82 and 100 percent (average of 87 percent).

### 4.33 Tunnel

Most of the rock encountered within the proposed tunnel alignment, during both the 1988 and 1989 subsurface investigations, was Cambridge Argillite or diabase/basalt (refer to Figures 4.6 through 4.8). Details of expected rock conditions follow.

### 4.33.1 Stratigraphy and Structure

The proposed tunnel passes through five lithologic zones. The lateral extent of these zones as described below is approximate. In general, transition between the zones is gradual but there may be abrupt transitions at fault locations. Evidence for such faults is implicit. Nevertheless, where excessive slickensides, gouge and/or abrupt changes in lithology were observed, possible fault zones have been indicated on the subsurface profile.

From north to south, the five zones are as follows:

1. Station $10+00$ to $50+00$ (Deer Island through President Roads): Massive to regularly bedded, medium hard to hard, gray argillite and sandy argillite, with some calcite veins and an approximately 30 -foot-thick diabase sill. The proposed tunnel appears to be entirely within this sill from station $10+50$ to $41+00$. The sill is below tunnel invert at station $49+00$.
2. Station $50+00$ to $90+50$ (Long Island): Regularly bedded, hard, gray, sandy argillite, argillite and fine sandstone, with pervasive quartz veins.
3. Station $90+50$ to $150+00$ (south of Long Island): Massive to regularly bedded, medium hard to hard, green banded gray, purple, and black argillite, sandy argillite, tufaceous argillite, and sandstone (color and lithologic transition is from north to south along the alignment). At the northern end of the zone, below the proposed tunnel invert, is a medium hard to very hard green diabase which is in turn underlain by a medium hard to hard, tufaceous sandy argillite.
4. Station $150+00$ to $200+00$ (anomalous section passing Rainsford Island): Highly sheared or fractured zone consisting of a massive to regularly bedded, medium hard to hard, light to dark gray argillite, sandy argillite, and sandstone at the northern end; a massive to regularly bedded, very soft to medium hard, gray and white argillite and sandstone at the southern end; and massive diabase intrusions around station 170+80 (boring 89-108).
5. Station $200+00$ to $261+60$ (from Peddocks Island to Nut Island): A regularly bedded, medium hard to hard, purple and gray argillite and sandy argillite, with minor green and red felsite lenses.

ZONE 1 (Station $10+00$ to $50+00$ ): This zone includes borings LDE-46, 89-116, 89-117, 88-26, 89-101, and 89-113. Boring 88-26 is approximately 794 feet off the alignment and not shown on the profile, however, the data from the boring were used in the overall analysis of the rock conditions within this zone. The RQD in the six borings ranges between 0 and 100 percent (poor to excellent) but typical values range between 81 and 100 percent (very good to excellent) for borings LDE-46, 88-26, 89-101 and 89-113; between 63 and 98 percent (good to excellent) for boring 89-117; and between 38 and 100 percent (fair to excellent) in
boring 89-116. Within the tunnel horizon (approximately one tunnel diameter above crown to one tunnel diameter below invert), the RQD ranges between 90 and 100 percent (excellent) in borings LDE-46, 88-26 and 89-113; between 61 and 94 percent (good to excellent) in borings 89-116 and 89-117; and between 33 and 100 percent (fair to excellent) in boring 89-101.

The typically poor condition of the rock core in borings 89-116 and 89-117 is believed to be due in part to drilling breaks along pre-existing discontinuities which had healed. The RQD values reported on the boring logs ignore breaks that appear to have occurred along these discontinuities. This is supported by the fact that all packer pressure tests performed in boring 89-117 did not take significant water. Packer tests were not performed in boring 89-116.

Slickensides and gouge are common in boring 89-116 and bedding plane separations, generally along previously healed/ recemented smooth surfaces, are common in boring 89-117. These observations appear to indicate the existence of a fault and are in agreement with seismic reflection and refraction survey data presented in Appendices $E$ and $M$ of the LDE's 1989 GI Report, Volumes II and IV. Based on these data, the LDE suggests that the presence of a southeast trending bedrock trough, which is near an area of low velocities, may be an indication that there is a fault or shear zone in the vicinity of the proposed North Shaft. Furthermore, Kaye's 1984 map (Figure 3.1) indicates an unnamed fault in this general area.

ZONE 2 (Station $50+00$ to $90+50$ ): This zone includes borings 89-102, 89-103 and 89-114. The argillite in zone 1 is fairly similar to that in zone 2 . The primary difference is that the argillite in zone 2 is intensely veined (primarily with quartz). The RQD in borings 89-102 and 89-103 ranges between 14 and 100 percent (poor to excellent) but typically ranges between 76 and 100 percent (very good to excellent); and in boring 89-114 it ranges between 30 and 100 percent (fair to excellent) but typically ranges between 59 and 95 percent (good to excellent). Within the tunnel horizon, $R Q D$ ranges between 98 and 100 percent (excellent) in borings 89-102 and 89-103; and between 30 and 85 percent (fair to very good) in boring 89-114.

A diabase intrusion, which was encountered approximately 75 feet above the proposed tunnel crown in boring 89-102, may previously have been part of the igneous sill observed in zone 1. Furthermore, the apparently abrupt change in lithology from boring 89-114 to $89-104$ and the observation of diabase at approximately the same elevation in zone 3 as in zone 1, may be an indication of a fault area between zones 2 and 3, from approximate station $90+00$ to $100+00$. These observations appear to suggest that a geological event displaced zone 2 upwards relative to zones 1 and 3 thereby creating two faults at
the zone boundaries. The two faults may be those mapped by Kaye and Billings (refer to Figures 3.1 and 3.2). The probable fault north of Long Island might be the one referred to as the Long Island fault by Kaye; and the fault south of Long Island may be the one referred to as the Mount Hope fault by Billings.

ZONE 3 (Station $90+50$ to $150+00$ ): This zone includes borings 89-104, 89-105 and 89-106. The rocks in this zone are coarser-grained than the more northerly argillite and produced fewer drilling breaks. The RQD in the three borings ranges between 19 and 100 percent (poor to excellent) but typically ranges between 81 and 100 percent (very good to excellent). Within the tunnel horizon, RQD ranges between 84 and 100 percent (very good to excellent) in borings 89-104 and 89-105; and between 70 and 100 percent (good to excellent) in boring 89-106.

Slickensides are especially common in boring 89-105 for about a 100-foot zone between elevations -100 and -200 feet (bracketing the tunnel horizon) and gouge is especially common throughout boring 89-104. Kaye mapped the Brewster syncline in this zone, and Billings mapped the Neponset fault (refer to Figures 3.1 and 3.2).

ZONE 4 (Station $150+00$ to 200+00): This zone has a variety of rock types and includes borings 89-107, 89-108, 89-109 and 89-115. It is characterized by extreme development of slickensides, fault gouge, partings along bedding planes, and significantly lower RQDs ( 0 to 100 percent) than in the more northerly borings. However, within the tunnel horizon, RQD ranges between 29 and 70 percent (fair to good), except in boring 89-109, where RQD ranges between 0 and 10 percent (poor).

In boring 89-107, there is an approximately 5-footthick diabase intrusion within the argillite, at approximate elevation -50 feet; and boring 89-108 is intruded by thick flows of highly sheared basaltic diabase (unlike the diabase seen elsewhere in the profile). During oriented coring, the diabase tended to fracture and crumble. In all four borings, slickensides are pervasive from top of rock to approximate elevation -200 feet. The southern borings in this section, 89-109 and 89-115, are an unusual sequence of sandy argillite and sandstone, with local 3 -inch-thick lenses of a pebble conglomerate (not the Roxbury). Recovery was very poor in these borings, and 2- to 8-inch-thick gouge zones with clay layers are common. Kaye indicates that two faults (Squantum and Peddocks Island) and a syncline (Hull) are in this zone (refer to Figure 3.1).

ZONE 5 (Station $200+00$ to $261+60$ ): This zone includes borings LDE-58, 88-29, 89-110 and 89-112 and extends from Peddocks Island to Nut Island. It has a consistent lithology which is generally softer than the gray or greenish argillite
found to the north. The RQD in the four borings ranges between 0 and 100 percent (poor to excellent) but typically ranges between 51 and 100 percent (good to excellent). Within the tunnel horizon, RQD ranges between 70 and 100 percent (good to excellent), except in boring 89-109, where RQD ranges between 14 and 97 percent (poor to excellent).

No bedding plane partings were observed in the core. The purple argillite contains some felsic volcanic ash and is intruded by very fine ( 1 to 2 mm ) layers of igneous material which have turned the argillite green for 5 mm above and below each intrusion. This gives the rock a peculiar striped appearance but does not significantly affect the hardness of the rock. Borings 89-110 and 89-112 are quite fractured from top of bedrock down to elevation -50 feet; and there are diabase and felsite intrusions approximately 70 feet below proposed tunnel invert. Billings mapped the Wollaston syncline approximately where borings 89-110 and 89-112 are located (refer to Figure 3.2).

Significant quantities of kaolinized argillite were not encountered in any of the borings. However, the poor recovery in boring 89-115, the altered argillite, and the 0.1- to 0.4-inchthick gouge zones with clay layers which are common in this boring are an indication that severely altered and/or kaolinized argillite could be encountered during tunneling.

The complexity and variability of this formation is consistent with the observations made during a subsurface investigation performed between Devonshire Street and Federal Street in downtown Boston (Errico and von Rosenvinge, 1986). Within this 20,000 square feet parcel, the bedrock consisted of the following three basic units:

1. Badly Decomposed Argillite - Kaolinized argillite, severely to completely weathered to hard clay-like consistency; overlying more competent sandstone and conglomerate, and argillite.
2. Sandstone and Conglomerate - Soft to hard, moderately to severely weathered, argillaceous sandstone and conglomerate.
3. Argillite - Very soft, moderately to severely weathered, argillite; underlies sandstone and conglomerate in northern portion of the site.

### 4.33.2 Bedding Planes and Discontinuities

The primary and secondary bedding planes and discontinuities have been plotted on Figures 4.11 and 4.12, respectively. These data were obtained from oriented cores taken
from approximately 20 -foot zones above and below the proposed tunnel crown and invert, respectively. Since the cores were taken, the vertical tunnel alignment has been raised 20 to 30 feet.

The data from each boring is contained in the "Geotechnical Data Report". The discontinuities include joint or fracture planes and cleavage planes. Due to the physical limitations of the goniometer, some of the steeper dipping discontinuities were only estimated. The data obtained in the preliminary boring program (1988) were also used to evaluate the general orientation trend of the rock along the alignment.

Oriented core from boring 89-109 was not considered reliable for determination of the orientation due to the poor quality of the rock and the tendency of the soft rock to rotate during drilling. This same problem occurred in boring 89-115 between elevation -118.7 and -121.2 feet. Hence, even though data from these portions of the oriented core are plotted on Figures 4.11 and 4.12, they were not used in the analysis.

The primary and secondary orientations of the bedding plane and discontinuities was evaluated from lower hemisphere projections of the poles on equal area stereonets. A density plot of the poles by percentage of total discontinuities falling within a counting area was then contoured. A high concentration of poles in a small area generates a cluster. The tighter the cluster the more confidence that can be given to the determination of strike and dip.

Several orientations of bedding planes and other discontinuities were encountered during drilling along the alignment, and it is likely that other orientations of rock discontinuities will be encountered during the tunneling. Several zones of slumped bedding were also encountered during the drilling. These tend to dip more steeply and are generally chaotic.

### 4.33.3 Intact Rock Properties

To evaluate the rock strength, 13 unconfined compression tests and over 500 point load tests were performed. Representative samples of rock types anticipated to be encountered in the tunnel horizon were selected and sealed immediately upon retrieval from the core barrel. Details of this procedure are provided in the "Geotechnical Data Report". The tunnel elevation has been raised 20 to 30 feet since most of these samples were obtained, however most of the samples are still considered to be representative of the rock at the tunnel depth.

In comparison with the testing performed for the LDE in 1988 (refer to the 1989 New England Research, Inc. report entitled, "Rock Properties - Secondary Treatment Plant, Deer Island") on both DP-5 and DP-6 samples, the recent unconfined compression tests performed by the PDE generally indicate a lower strength rock. Both the low and high values for the 1989 strength data range are lower than those for the 1988 tests. The test results obtained by the PDE compare well with the unconfined testing performed by the Robbins Company (refer to Appendix $C$ of the LDE's 1989 GI Report) on samples supplied to them by the LDE. The 1989 data are summarized on Table 4.1.

The lower unconfined compression strength data range was to be expected since the samples tested by the PDE were of rock cores that exhibited a significantly higher degree of alteration than the 1988 samples. Furthermore, the rock samples tested by the PDE failed along joint surfaces. In several instances these joints were not visible prior to failure. Upon examination of the tested specimen it was noted that the joint surface typically had a very thin clay coating that was slippery to the touch.

Typically along this alignment, the argillite has a low to medium strength, in the typical range of a siltstone. It has bedding planes that have openings of less than 1 to 3 mm wide. These partings vary in space from several per inch to over 10 feet apart. However, it has been observed that bedding plane partings of the rock will occur with time. This is most probably due to stress relief and air drying of the cores.

The point load index strength data can be considered as indices of the unconfined strength of the rock. These data indicate that the corrected index strength ratio of axial tests to tests parallel to the bedding plane is approximately 2.7 to 1. The majority of the tests were parallel to the bedding. The index strength ratio of tests that failed along bedding planes to those that failed along joints is approximately 2 to 1.

Rock having unconfined strengths of 11.5 ksi to 26.6 ksi with corresponding secant moduli of 5,000 to $7,300 \mathrm{ksi}$ was encountered in the northern portion of the alignment from President Roads to Rainsford Island and from south of Peddocks Island southward. A zone of soft rock, i.e. unconfined strengths of 0.9 to 3.9 ksi with corresponding secant moduli of 500 to $1,500 \mathrm{ksi}$, that was highly altered was found in the area of the bend in the tunnel alignment west of Peddocks Island. Unconfined strengths for the 1988 samples ranged between 0.5 ksi (altered argillite) and 48.5 ksi (diabase).
table 4.1
SUMmARY OF UNCONFINED COMPRESSION TESTS

| \| BORING | DEPTH | NO. | TYPE | Ht | Dia | Ratio | total Wt | $\begin{gathered} \text { UNIT } \\ \text { Wt } \end{gathered}$ | FAILURE <br> LOAD | COMPRESSIVE STRENGTH | MODULUS <br> Esec 250\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I |  |  |  | in | in |  | gms | pcf | lbs | ksi | ksi |
| \| 89-101 | 211.9 | Ur10.1 | Argillite | 4.97 | 2.405 | 2.07 | 972.32 | 163.9 | 22000 | 4.8 | 2300 |
| \| 89-101 | 217.7 | Ur10.2 | Argillite | 5.51 | 2.405 | 2.29 | 1098.54 | 167.2 | 9000 | 2.0 | 1500 |
| 1 |  |  |  |  |  |  |  |  |  |  |  |
| \| 89-102 | 234.6 | Ur6. 1 | Sandy Argillite | 4.97 | 2.400 | 2.07 | 1011.00 | 171.2 | 64000 | 14.2 | 5300 |
| \| |  |  |  |  |  |  |  |  |  |  |  |
| \| 89-104 | 241.9 | Ur2.1 | Tuffaceous Sandy | 5.04 | 2.404 | 2.10 | 1011.56 | 168.5 | 93500 | 20.6 | 5600 |
| 1 |  |  | Argillite |  |  |  |  |  |  |  |  |
| I |  |  |  |  |  |  |  |  |  |  |  |
| \| 89-105 | 231.3 | Ur8. 1 | Tuffaceous Sandy | 4.99 | 2.398 | 2.08 | 1003.85 | 169.8 | 120000 | 26.6 | 7300 |
| 1 |  |  | Argillite |  |  |  |  |  |  |  |  |
| 1 |  |  |  |  |  |  |  |  |  |  |  |
| \| 89-106 | 223.5 | Ur4. 1 | Argillite-sandstone | 5.01 | 2.401 | 2.09 | 1032.43 | 173.3 | 115000 | 25.4 | 6500 |
| \| |  |  |  |  |  |  |  |  |  |  |  |
| \| 89-107 | 231.3 | Ur9. 1 | Argilllite | 4.97 | 2.385 | 2.08 | 991.54 | 170.1 | 27000 | 6.0 | 3800 |
| 1 |  |  |  |  |  |  |  |  |  |  |  |
| \| 89-109 | 219.5 | Ur7.1 | Argillite | 4.95 | 2.390 | 2.07 | 888.37 | 152.5 | 4000 | 0.9 | 500 |
|  |  |  |  |  |  |  |  |  |  |  |  |
| \| 89-110 | 191.4 | Ur5.1 | Argillite | 4.98 | 2.393 | 2.08 | 988.65 | 168.1 | 17500 | 3.9 | 1500 |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 89-111 | 196.7 | Uri9.9 | Argillite | 4.75 | 2.400 | 1.98 | 908.02 | 160.9 | 8800 | 1.9 | 1300 |
| \| 89-112 | 196.9 | Ur 12.1 | Argillite | 4.99 | 2.395 | 2.08 | 991.10 | 168.0 | 10000 | 2.2 | 3000 |
| 189-113 | 222.0 | Ur3. 1 | Diabase | 4.92 | 2.410 | 2.04 | 1011.34 | 171.7 | 52500 | 11.5 | 50001 |
| \| 89-114 | 211.1 | Ur1. 1 | Sandy Argillite | 5.03 | 2.397 | 2.10 | 1008.28 | 169.2 | 52000 | 11.5 | 52001 |

Rock hardness indices are shown on Table 4.2. Typically, samples tested in both the 1988 and 1989 programs gave rock hardness values that are consistent with previously reported values for siltstones or argillite in the Boston Basin. However, these index values were very low for the argillite in borings 89-109, 89-110, 89-111 and 89-115. The samples of the igneous rock from borings 88-27, 88-29, 89-104 and 89-113 showed a wide Shore hardness range of 39.5 to 73.4 and a lower total hardness index (by a factor of 2) than the hardness range for a typical diabase (Tarkoy \& Hendron, 1975).

Based on observation of thin sections of argillite samples, the quartz content of the rock is estimated to typically range between 15 and 30 percent. The quartz appears to consist mostly of clay or silt size particles which are not distinguishable to the naked eye.

TABLE 4.2
SUMMARY OF ROCK HARDNESS DATA

| \| Sample | Bore | 1 Elev. | 1 Rock | Dia. | Shore | \|Schmidt | Modified | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \|Number | Hole | 1 | 1 Type | 1 \| | sclero- | Hammer 1 | Taber | \| Hardness |
| 1 |  | 1 | 1 | 1 | scope |  | Abrasion |  |
| 1 |  | 1 | 1 | 11 | (0-Type) | \|(L-type)| |  |  |
|  |  | 1 (MDC) | 1 | in. | HS | HR | HA | HT |
|  |  |  |  |  |  |  |  |  |
| 1 | 89-102 | \| -179.6 | \| Argillite with sandy argillite | 2.38 | 56 | 44 | 1.15 | 471 |
| 1. 2 | 89-104 | 1-152.5 | \| Diabase, light and dark green layers | 12.38 | 50 | 431 | 1.82 | 581 |
| 3 | 89-105 | \| -147.7 | \| Tuffaceous sandy Argillite, thin bedding | 12.38 | 52 | 451 | 1.25 | 501 |
| 4 | 89-106 | \| -150.5 | \| Argillite and sandstone | 12.38 | 54 | 451 | 1.03 | 461 |
| 5 | 89-109 | \|-130.0 | \| Argillite, purple | 12.38 | 16 | 17 \| | 0.20 | 8 |
| 6 | 89-110 | \|-123.9 | \| Sandy Argillite with thin felsite beds | 12.38 | 311 | 371 | 0.49 | 261 |
| 7 | 89-911 | \|-128.5 | \| Argillite with altered beds | 12.38 | 29 | 191 | 0.38 | 121 |
| 8 | 89-112 | \|-122.2 | \| Argillite, purple with felsite beds | $\mid 2.38$ \| | 271 | 1311 | 0.51 | 221 |
| 9 | 89-113 | \|-174.4 | \| Felsite | \| 2.38 | 431 | \| 361 | 1.39 | 421 |
| 10 | 89-114 | \|-115.5 | \| Sandy Argillite | $\mid 2.38$ \| | 33 | 421 | 1.231 | 461 |
| 14 | 89-115 | \|-137.7 | \| Argillaceous Sandstone | $\mid 2.38$ | 201 | 1201 | 0.31 | 111 |

### 4.40 GROUNDWATER

### 4.41 North Shaft

Groundwater was monitored at the proposed North Shaft location in borings LDE-46, LDE-39 and LDE-38. The readings indicate that groundwater fluctuates between approximately elevation 104.5 and 109.5 feet, corresponding to low and high tide, respectively. Groundwater level fluctuation at the shaft lags that of sea level by approximately 30 to 45 minutes.

Packer tests performed in LDE-46 indicate that average permeability within the rock ranges between $2.5 \times 10^{-7}$ and $1.0 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}$ (LDE's 1989 GI Report, Volume I). Falling head test results from an auxiliary borehole, near the shaft boring (LDE's 1989 GI Report, Appendix 0 , Volume IV) $y$ indicate that permeability will range between less than $1 \times 10^{-4}$ and $9.3 \times 10^{-4}$ $\mathrm{cm} / \mathrm{sec}$. Within the till and between $7.1 \times 10^{-5}$ and $4.1 \times 10^{-3}$ $\mathrm{cm} / \mathrm{sec}$. within the outwash, i.e. the non-fill deposits above the till.

Two pump tests were performed (one in soil and the other in bedrock) at this location to evaluate the feasibility of dewatering the area prior to shaft excavation (refer to the LDE's November 30 , 1989 report, entitled, "Aquifer Test Interpretive Report, Deer Island", for drawdown data and test details). The drawdown data were analyzed by the LDE using a variety of techniques. A description of the tests and the PDE's interpretation of the major implications of the pumping test data follows.

For the test in soil, pumping was performed at an essentially constant rate of approximately 120 gpm for a period of 49.5 hours (September 5 to September 9, 1989) and groundwater was then monitored for an additional 51 hours after pumping was terminated. For the test in bedrock, pumping was performed at a rate of approximately 43 gpm for a period of 76 hours (October 13 to October 16, 1989) and groundwater was then monitored for an additional period of 72.5 hours during recovery. During those periods, the response of the aquifers during pumping and recovery was monitored using twelve piezometers for the soil test and nine wells for the rock test. Discharge was to the beach about 800 feet from the proposed shaft location.

It is the PDE's opinion that the pump test data indicate that the soil and rock aquifers have a combined transmissivity on the order of 10,000 gallons/day/foot and a storage coefficient as low as $1.0 \times 10^{-4}$. The contractor should be prepared to pump approximately 300 to $1,200 \mathrm{gpm}$ of groundwater during excavation if he chooses to utilize a ground support system requiring pumping. The Contractor is given the option of choosing a concrete diaphragm wall or ground freezing support system that would be designed to obviate the need for a dewatering system.

The tests indicate that the lower portion of the overburden (the glacial till stratum) acts as a leaky artesian aquifer. Furthermore, the two aquifers (soil and fractured rock) are well connected hydraulically, and water levels in them exhibit tidal fluctuations that are approximately 50 percent of the amplitude of the corresponding tide. Ground-water withdrawn during the limited period of the tests had no significant salt concentrations. Observations in the piezometers showed tidal
influences. Consequently, the PDE believes that pumping rates will stabilize relatively quickly and salinity concentrations may increase with time.

Maximum drawdown in the wells, during the pumping test in the soil, was approximately 46 feet. The aquifer materials are believed to be relatively thin (typically on the order of 10 feet) and approximately 120 feet below ground surface which corresponds to the pervious gravelly silty sand stratum above the rock/soil interface (refer to section 4.2 for additional subsurface information). Therefore, the aquifer material remained saturated throughout the test. Different conditions will exist during construction and it may not be practical to dewater the soil/rock interface. Consequently, test results should be interpreted with care.

### 4.42 South Shaft

Groundwater was monitored at the proposed South shaft location in boring LDE-58. The readings indicate that groundwater fluctuates between elevation 107 and 117 feet.

Packer tests performed in LDE-58 indicate that average permeability within the rock ranges between $2.6 \times 10^{-7}$ and 2.7 x $10^{-3} \mathrm{~cm} / \mathrm{sec}$. (LDE's 1989 GI Report, Volume I). Falling head test results from an auxiliary borehole, near the shaft boring (LDE's 1989 GI Report, Appendix 0, Volume IV), indicate that permeability should range between less than $1 \quad x \quad 10^{-7}$ and $9.3 \times 10^{-4} \mathrm{~cm} / \mathrm{sec}$. Within the till; between $7.1 \times 10^{-5}$ and 4.1 x $10^{-3} \mathrm{~cm} / \mathrm{sec}$. Within the outwash, i.e. the non-fill deposits above the till; and approximately $3.6 \times 10^{-4} \mathrm{~cm} / \mathrm{sec}$. within the fill.

### 4.43 Tunnel

The tunnel will be constructed entirely in rock at a depth of approximately 205 to 270 feet below sea level. Since low permeability materials appear to overlie most of the rock, the fact that the proposed tunnel will be constructed beneath the sea need not result in large inflows of water. Groundwater infiltration into the tunnel will be through the rock joints, not intact rock.

The groundwater inflow in the tunnel was estimated using data for packer tests that were conducted during both the 1988 and 1989 marine exploration programs, and the data available regarding the measured water inflow into the Main Drainage Tunnel during its construction in 1956 and 1957 (Hellstrom, 1989).

The data from the packer tests performed in the borings along the proposed alignment have been reduced to permeability values that typically range from $\leq 0.1 \times 10^{-5}$ to $50 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}$.

### 4.44 Groundwater Quality

Groundwater withdrawn during the pump test at the proposed North Shaft had no significant salt concentrations. However, the piezometric levels showed tidal influences. As pumping during construction will be for a much longer period, salt water should be expected.

In addition, water samples were collected and analyzed during the pumping tests at the proposed North Shaft location (refer to Table 5-1 in the LDE's November 30, 1989 report, entitled, "Aquifer Test Interpretive Report, Deer Island", for the water quality test data). The purpose of the analyses was to characterize the groundwater in terms of corrosivity and contamination. Based on the data collected, water from the aquifer should be suitable for discharge to marine waters after siltation control and compliance with discharge permit requirements.

### 4.50 SEISMICITY

New England is a region of moderate earthquake hazard that experiences a minor earthquake every couple of days (Barosh, 1989). However, this rate of activity is at least an order of magnitude less than that of Southern California. A plot of seismic events in the northeastern United States and adjacent Canada from 1534 to 1977 indicates that most of the seismic activity is concentrated in a seismic area that arcs around cape Ann, from the south of Boston to southern Maine.

The two principal historic seismic events are the 1755 earthquake of probable epicentral intensity VIII (Modified Mercalli Intensity Scale of 1931, abridged version) and the 1727 event of intensity VII. The 1755 earthquake, which was located about 50 miles offshore of Boston, caused damage across eastern Massachusetts. It apparently thoroughly frightened the inhabitants of Boston, where it reached a high intensity of VII. The smaller 1727 earthquake was similarly located offshore north of Cape Ann and caused minor damage along the coast near Newbury, Massachusetts and adjacent areas in New Hampshire. It greatly startled the residents of Boston but caused little damage (intensity VI).

According to Barosh (1989), potential earthquakes would have the following effect on eastern Massachusetts:

1. Cape Ann (poses the greatest threat to Boston): A maximum credible event there of intensity IX would cause a general intensity effect in the Boston region with intensity level VIII, and possibly level IX, effects over the extensive areas of filled ground.
2. La Malbaie, Quebec: Large earthquakes may cause average intensities of VII. Long period motions might possibly cause damage to tall buildings and other structures that are susceptible to such motions.
3. Central New Hampshire: May only produce minor damage in eastern Massachusetts.

The effect of earthquakes on underground structures may be broadly grouped into three classes - faulting, ground failure, and shaking.

1. Faulting: This includes direct primary shearing displacements of bedrock which are generally limited to relatively narrow seismically active fault zones. Sliding along a geologic fault introduces stresses that may be significantly higher than the magnitude induced by shaking. It is not practical to design an underground structure to restrain major displacement in the order of several inches to feet. It is more feasible to avoid sensitive areas or to accept displacements, localize the damage, and provide means to accommodate repairs. There is no evidence of recent movement in fault zones which the tunnel will cross.
2. Ground Failure: Damage caused by ground failure may be associated with rock or soil slides, liquefaction, soil subsidence and other effects of ground motion. This mode typically affects only shallow structures.
3. Shaking: Damage due to shaking for lined tunnels may include spalling, cracking or failure of the liner. Shaking may also reduce shear strengths of the soil and rock mass above the tunnel and subsequently the tunnel support system may have to withstand additional loads. For unlined tunnels, such vibrating motion may cause block motion, spalling, rock fall, or local opening of joints.

Of these three effects, only shaking is anticipated to be a consideration for the tunnel and shafts.
4.60 GASES

Harmful or explosive gases such as methane, hydrogen sulfide, radon, and/or carbon dioxide are frequently encountered in regions of postvolcanic activities. However, the rock formations along the proposed tunnel alignment are not known as gas producers. Nevertheless, continuous ventilation at the heading should be required to insure the displacement of harmful gases by fresh air and frequent checks for the presence of gas should be made.





granular fill - Loose to dense, brownish gray, fine to coarse gravel and SAND, WITH VARYNG QUANTIIES OF SILT, TRACE CLAY, TRACE ORGANICS, OCCASIONAL boule

SAND \& SILT - DENSE, GRAY, FINE SAND AND SILT, SOME CLAY, TRACE GRAVEL.

SILTY CLAY - STIFF TO HARD, YELLOW-BROWN TO GRAY, SILTY CLAY, TRACE FINE SAND.

SAND \& GRAVEL - DENSE TO VERY DENSE, BROWN, FINE TO COARSE GRAVEL. SOME FINE TO COARSE SAND, WTTH TRACE TO SOME SILTY CLAY.

TILL - HARD, GRAY CLAYEY SILT, WITH VARYING QUANTTTIES OF GRAVEL, TRACE
SAND, OCCASIONAL BOULDERS.

```
SECTION A-A
```




| Erardrup | Jacobs Aseoriates <br> Coldberg-Zoino Associatos <br> Delon Hampton A Aesociates | DP-5 <br> INTER-ISLAND TUNNEL BOSTON HARBOR | SUBSURFACE SECTION AT SOUTH SHAFT <br> NOV. <br> 1989 <br> FIGURE No. 4.5 |
| :---: | :---: | :---: | :---: |



FILE No. U-11305.1

## GENERALIZED <br> SOIL DESCRIPTION



FILL - LOOSE TO MEDIUM DENSE, MISCELLANEOUS FILL CONSISTING OF SANDY CLAY, PIECES OF DRY WALL, WIRE, AND OTHER CONSTRUCTION DEBRIS; OR MEDIUM DENSE TO DENSE, GRANULAR FILL CONSISTING OF GRAY, FINE TO COARSE SAND AND GRAVEL, TRACE CLAY, TRACE ORGANICS.


GRAVEL, SAND a SILT-DENSE TO VERY DENSE, BROWN -
gray stratum consisting of varying quantities of gravel, sand and silt, with trace clay.

CLAY - SOFT TO VERY STIFF, GRAY TO YELLOWISHBROWN, SILTY CLAY, TRACE FINE SAND.

IHL - DENSE TO VERY DENSE, GRAY SAND AND GRAVEL WITH VARYING QUANTITIES OF COBBLES, SILT AND CLAY; OR HARD, GRAY, CLAYEY SILT, WITH VARYING QUANTITIES OF COBBLES, GRAVEL AND SAND.

SILT \& SAND - VERY DENSE, BROWN, FINE TO COARSE SAND AND SILT, TRACE SHELL FRAGMENTS.

SAND \& BOULDERS - ARGILLICEOUS BOULDERS,FRAGMENTS OF ARGILLITE, QUARTZITE AND IGNEOUS ROCK, COBBLES, SOME FINE TO COARSE SAND AND GRAVEL.


FOR DESCRIPTION OF THESE ROCKS, REFER TO PROFILE
INTER-ISLAND TUNNEL BOSTON HARBOR

## LEGEND



## NOTES:

1. THE STRATIFICATION LINES ARE BASED UPON INTERPOLATIONS BETWEEN WIDELY SPACED EXPLORATIONS AND THUS REPRESENT THE APPROXIMATE BOUNDARIES BEIWEEN SOIL TYPES. ACTUAL TRANSITIONS MAY VARY FROM THOSE SHOWN.
2. HORIZONTAL TO VERTICAL SCALE DISTORTION FOR PURPOSES OF PRESENTATION CAUSES TRENDS IN STRATA TO APPEAR MORE PRONOUNCED THAN THOSE, WHICH ACTUALLY EXIST.



## POLE PLOT OF ROCK DISCONTINUITIES FOR SHAFT BORING LDE-46 AT DEER ISLAND BEDDING PLANE DISCONTINUITIES



## POLE PLOT OF ROCK DISCONTINUITIES FOR SHAFT BORING LDE-58 AT NUT ISLAND

 BE1) elevation mDC datum.
2) ALL DIAGRAMS ARE PLOTTED ON EQUAL AREA NETS AND REPRESENT A DENSITY PLOT BY PERCENTAGE OF TOTAL DISCON TINUTIES THAT
3) DATA PLOTTED USING LOWER HEMISPHERE
4) PLOTS BASED ON SUBSURFACE DATA PROVIDED

3-4 Indicates contour interval by PERCENTAGE OF TOTAL DISCONTINUITIES THAT FELL WITHIN THE COUNTING AREA


ELEVATON (ft.) -2.5 TO - 62.1 PRIMARY DI SECONDARY DIP DIRECTION AND DIP

JOINT AND VEIN DISCONTINUITIES


ELEVATION (ft.) -0.6 TO -19.4 PRIMARY DIP DIRECTION AND DIP SECONDARY DIP DIRECTION AND DIP $263^{\circ} \quad 04^{\circ}$


Elevation (ft.) -30.9 TO -48.1 PRIMARY DIP DIRECTION AND DIP SECONDARY DIP DIRECTION AND DIP
$155^{\circ}$

ELEVATION (ft.) -59.5 TO -78.5 PRMARY DIP OIRECTION AND DIP $\begin{array}{cc}\text { OO2 } \\ \text { SECONDARY OIP } \\ & 161^{\circ} \\ & \text { DIRECTION AND OIP } \\ & 35^{\circ}\end{array}$

$161^{\circ}$


Elevation (ft.) -64.5 to -101.7
ELEVATON (ft.) -64.5 TO -101.7
PRIMARY DIP DIRECTION AND DIP SECONDARY ${ }^{317}{ }^{\circ}$ DIP DIRECTION AND DIP


LEVATION (H.) -92.7 TO -101.0 RMMRY $001^{\circ}$ Cli. $55^{\circ}$ SECONDARY DIP DIRECTION AND DIP




### 5.00 GEOTECHNICAL ENGINEERING CONSIDERATIONS

### 5.10 OVERVIEW

This section presents discussions of geotechnical engineering issues pertaining to design and construction of the tunnel and associated shafts, conduits and surge tank.

The tunnel, with two 14 -inch-diameter sludge pipes, will be constructed primarily in Cambridge Argillite. Although the Argillite is expected to be competent (moderately blocky, with widely spaced joints, to blocky and seamy) in most locations, the tunnel will probably also pass through diabase intrusions, fault zones and zones of altered Argillite. Temporary rock support will consist primarily of rock bolts, although more extensive support will also be necessary in some areas. The final lining will primarily be cast-in-place, unreinforced concrete, however, local sections may require reinforcement.

Selection of the method of tunnel excavation will be up to the Contractor. However, due to requirements and anticipated superior advance rate, it is expected that a boring machine (TBM) will be used, rather than drill and blast methods, for most of the tunnel.

The shafts at Deer Island and Nut Island will be excavated through approximately 131 and 95 feet, respectively, of surficial deposits. Hence, carefully designed lateral support systems will be required for retention of the soil during excavation. Possible schemes include: a concrete diaphragm wall, ground freezing, and liner plate or precast concrete segment, with ring beams and grouting, for the North Shaft. Conditions appear to favor a soldier pile and lagging system for the South Shaft, with dewatering or a sheetpile cut-off for the pervious upper zone and grouting for the anticipated fractured top of rock.

If the soil/rock interface is pervious (whether due to a granular stratum or fractured top of rock) and hydraulically connected to the sea, there is the potential for the excavation bottom becoming quick, i.e. upward seepage pressures reducing the vertical effective stress in the soil to zero. It may therefore be prudent to install groundwater pressure relief wells along the outside perimeter of the proposed shaft areas prior to excavation. This would reduce the chances of the excavation bottom becoming unstable.

Shaft excavation will most probably be by clam-shell, or equivalent, in the soil; and by drill and blast techniques in the rock. Rock support measures for shaft walls will consist of rock bolts and welded-wire fabric (WWF) reinforced shotcrete installed
primarily to prevent minor rock fragment fallout that might endanger personnel in the shaft. On completion of tunnel excavation, both shafts will be converted into permanent hydraulic structures with concrete lining. At Deer Island, the concrete lining for the shaft will encapsulate the two 14 -inchdiameter sludge pipes at an azimuth of 120 degrees.

## Tunnel

1. Rock Variability: The Cambridge formation can vary greatly over short distances from a "soil-like" kaolinized Argillite to competent Argillite to hard igneous intrusions. Kaolinized zones, if extensive, could seriously impede the progress of a hard rock TBM by clogging cutters and the muck handling system and failing to provide sufficient bearing capacity for support and advancement. Kaolinized rock was not encountered during subsurface explorations. Hard igneous intrusions may slow TBM progress, but are not expected to halt it.
2. Rock Support: Rock support systems will vary from none to pattern rock bolting to ring beams with steel mat lagging and shotcrete depending on conditions encountered. Pattern bolting is expected to suffice for most of the tunnel.
3. Groundwater Inflow: Estimates of groundwater inflow during excavation have been performed based on borehole packer tests and data from previously excavated tunnels in similar rock formations. The permeability of the rock mass at tunnel depth has been estimated to vary from less than $10^{-6}$ to $50 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}$. Typical groundwater inflows are expected to vary from less than $25 \mathrm{gpm} / 1,000$ feet to $300 \mathrm{gpm} / 1,000$ feet. Locally heavy inflows greater than $300 \mathrm{gpm} / 1,000$ feet are considered to be possible from heavily fractured zones that are believed to have resulted from identified faults in the cambridge formation.

## Shafts

1. Lateral Soil pressures: Estimates of appropriate design pressures, due to soil and groundwater, for the various lateral soil support systems that the Contractor may adopt have been prepared.
2. Ground Movement: Lateral support systems will have to be designed and constructed to limit ground movements to levels that do not adversely affect existing adjacent structures and/or proposed structures that will be constructed prior to shaft excavation.
3. Groundwater Control: Successfully controlling groundwater during shaft excavation, especially at Deer Island, where there is an approximately 25 -foot-thick granular stratum beneath the till which could cause excavation bottom "blow", will be a key concern.

### 5.20 NORTH SHAFT

### 5.21 General

Based on information provided by the LDE, the centerline of the North Shaft is to be located at 746,715.00 feet E: 491,517.00 feet $N$ (Mass. Grid, 1927).

The North Shaft will be excavated through approximately 131 feet of soil and 190 feet of rock. The soil will consist of (in descending order from ground surface), compacted replacement engineered fill; granular deposits; glacial till; and a gravelly silty sand, with boulders and rock fragments. It is the PDE's understanding that the miscellaneous fill, which is in place at the time this report is being written (November, 1989), will have been excavated and replaced with engineered fill (by the Early Site Preparation Contractor) up to elevation +125 feet, prior to shaft construction.

Selection of the size of the construction shaft will be at the discretion of the contractor. For this particular shaft, the TBM will probably be the largest piece of equipment requiring access through it. Furthermore, everything lowered or raised must be able to clear services such as personnel elevators, ventilation ducts, cables and conduits. Based on these considerations, it is anticipated that the construction shaft will have an interior diameter of at least 26 feet. The finished diameter of the permanent shaft will be 11 feet below elevation +80 feet, and 16 feet above elevation +80 feet.

### 5.22 Geotechnical Desion Parameters

The geotechnical design parameters used to compute the lateral pressures on the initial and final support systems are shown on Table 5.1. The parameters were selected based on soil classification, laboratory tests, standard penetration tests (SPTs), and experience. The subsurface profiles for the North Shaft and the Surge Structure are based primarily on boring LDE-46; and the profile for the SSPS conduit is based on borings PDE-2, LDE-39 and LDE-46 (refer to Figure 4.4).

For the initial structures, groundwater elevation was assumed to be 115.3 feet, which is the Federal Emergency Management Agency (FEMA) predicted stillwater storm surge elevation, with a return period of 50 years, for Deer Island; and for final structures, groundwater was assumed to be at elevation
119.5 feet, which is the projected 100-year surge level at Deer Island for the year 2100. These groundwater elevations are the LDE determined maximum flooding conditions.

TABLE 5.1

## Lateral Pressure Design Parameters

## Soil Parameters:

| Soil Description | Unit <br> Weight <br> (pCf) | Friction <br> Angle <br> (Degrees) | Undrained Shear <br> Strength <br> (psf) |
| :--- | :--- | :---: | :---: |
| Miscellaneous Fill | 120 | 32 | 0 |
| Granular Fill | 125 | 35 | 0 |
| Gravelly Silty Sand | 120 | 32 | 0 |
| Silty Clay | 120 | 23 | 1,000 |
| Glacial Till | 130 | 38 | 2,000 |
| Sand, with Boulders, <br> Cobbles and Gravel | 125 | 35 | 0 |

Groundwater Parameters:

| Initial Structures | 116.6 | 115.3 |
| :--- | :--- | :--- |
| Final Structures | 122.3 | 119.5 |

[^0]
### 5.22.1 Shaft Structures

Several theories for estimating lateral earth pressures against shaft linings are discussed by Prater (1977). There is considerable variation in the pressures estimated using these methods. Prater concludes that below a certain depth, earth pressure is probably constant or reaches a maximum and then drops with depth to virtually zero. Similarly, the design pressures recommended in NAVFAC DM-7.1 (1982) for vertical shafts indicate that in granular soils (with friction angles of 30 to 35 degrees), the horizontal pressures become constant from a depth of approximately four times the excavation diameter. In cohesive soils, soil arching and mobilized shear resistance is believed to also cause reduction in lateral pressure for deep shafts. Consequently, considerable engineering judgement is necessary in arriving at safe, economical design pressures for cylindrical shafts, especially in mixed soil conditions.

## Temporary Lateral Pressures

For the temporary excavation condition, two cases were evaluated: (a) no dewatering and (b) dewatering down to top of rock. The lateral earth pressure evaluations were performed as follows:

Case (a): No dewatering
Using the parameters shown on Table 5.1 and assuming active conditions, the total lateral pressures due to the soil and groundwater were derived using both drained and undrained analysis and the results plotted on the same graph. The total force due to the pressure envelope from these two analyses was then redistributed into a triangular pressure and assumed to be the pressure that would act on the temporary lateral earth support structure. The recommended lateral earth pressure shown on Figure 5.1 consists of this triangular pressure minus the pressure due to groundwater.

Case (b): Dewatered
The same analyses as outlined for case (a) above were also performed for this case. The main difference was that the excavation was now assumed to be dewatered with groundwater down to bedrock prior to excavation. The recommended design lateral earth pressure is as shown on Figure 5.1.

## Permanent Lateral Pressures

Lateral pressures for the final shaft structure were estimated using effective stress analysis. For cohesionless materials, the pressures were assumed to be due to at-rest ( $\mathrm{K}_{0}$ ) conditions and $\mathrm{K}_{\mathrm{O}}$ was estimated using Jaky's equation (refer to

Table 5.1 for values). For cohesive materials, permanent pressures were assumed to be due to an effective horizontal to vertical stress ratio of approximately 0.5 (assuming insignificant soil creep).

The estimated design pressures are shown on Figure 5.1. To account for the reduction in lateral earth pressure due to arching, pressure was assumed to be constant from a depth equal to four times the excavation diameter down to top of rock (Wong and Kaiser, 1988). Estimates were performed for excavation diameters of $18,22,26$ and 30 feet.
5.22.2 SSPS Conduit

Initial and final lining details are shown on contract Drawing No. E1 S-06. This structure will be an approximately 145-foot-long, 11-foot-finished-diameter conduit which will connect the North Shaft to the SSPS. It will be constructed as a tunnel within dense to very dense glacial till and stiff to very stiff silty clay at an invert elevation of 61 feet (refer to Figure 4.4).

### 5.22.3 Surge Storage Structure

A 17.5-foot-long, cast-in-place concrete surge storage structure is to be connected to the North Shaft via a 17.5-footlong cast-in-place concrete conduit (refer to Figures 2.1 and 4.4). The purpose of the surge storage structure is to store excess effluent from the Inter-Island Tunnel during a sudden surge resulting from effluent momentum after SSPS power outage.

## Temporary Lateral Pressures

For the temporary excavation condition, two cases were evaluated: (a) no dewatering and (b) dewatered. Based on boring LDE-46, this structure will be constructed entirely within cohesionless soil. The lateral earth pressure evaluations were performed as follows:

## Case (a): No dewatering

Using the parameters shown on Table 5.1 and assuming active conditions, the lateral soil pressure due to the soil was evaluated using effective stress analysis. The total effective force due to the soil pressure was then increased by 30 percent and redistributed into a rectangular pressure, in accordance with Terzaghi and Peck's classic method. This soil pressure and the hydrostatic groundwater pressure were assumed to be the total pressure that would act on the temporary lateral earth support structure. The recommended lateral pressures are shown on Figure 5.2.

Case (b): Dewatered
The same analysis as outlined for case (a) above was also performed for this case. The main difference was that the excavation was now assumed to be dewatered, with groundwater down to bottom of excavation. The recommended design lateral earth pressure is as shown on Figure 5.2.

## Permanent Lateral Pressures

Lateral pressure for the final surge structure was also estimated using effective stress analysis. For the cohesionless materials, the pressures were assumed to be due to at-rest ( $\mathrm{K}_{0}$ ) conditions and $\mathrm{K}_{\mathrm{O}}$ was estimated using Jaky's equation (refer to Table 5.1 for values). The recommended design pressure is shown on Figure 5.2.

### 5.22.4 Surge Storage Structure Conduit

A 17.5-foot-long, cast-in-place concrete conduit, with an 8 -foot internal width and variable internal height (maximum of 12.5 feet), will connect the surge structure to the North Shaft (refer to Figure 2.1). The top of the completed conduit will be flush with the ground surface.

Lateral pressure for the conduit was estimated using effective stress analysis. For the cohesionless materials, the pressures were assumed to be due to at-rest ( $\mathrm{K}_{0}$ ) conditions and $\mathrm{K}_{0}$ was estimated using Jaky's equation (refer to Table 5.1 for values).

### 5.23 Shaft Excavation in Soil and Rock

Excavation within the soil is expected to be by clam-shell or equivalent using a crane at ground level. Alternatively, the Contractor may elect to use a small hydraulic backhoe or excavator in the shaft to load muck skips which are then hoisted by a crane. Adequate control of groundwater will be critical, especially for the latter method of excavating and mucking. The most critical location will be at the interface between soil and rock. To avoid problems due to groundwater, e.g. excavation bottom instability or surface subsidence due to sloughing of sand as water seeps in, the 25-foot-thick water-bearing pervious stratum below the till at this location must be depressurized or hydraulically isolated prior to excavation.

It is anticipated that excavation of the shaft through rock will be by drill and blast techniques. To provide adequate space for the Contractor's shaft facilities and access for the TBM, it is anticipated that the shaft will be overexcavated to a diameter of approximately 26 feet in the rock section.

### 5.24 Temporary Lateral Support in Soil - Shaft

Shaft excavation will involve constructing a temporary lateral support wall down to sound bedrock to retain the soil as the excavation proceeds. Selection of a support system should be left to the contractor, with detailed design by the Contractor subject to review by the CM. Of particular importance will be groundwater control.

The following support systems are considered feasible for the North Shaft:
A. Bolted Precast or Steel Plate Liner - Typically involves removing the top layer of ground to a depth of two to three rings below the proposed level of the top of the finished shaft; creating a level area, approximately 3 feet larger in diameter than the outside diameter of the proposed shaft; constructing the first two rings; and then surrounding them with concrete to form a rigid concrete collar. It is important that these two rings be built level and to a true circle. The concrete collar serves to preserve the shape and level of these two rings, to protect the edge of the shaft from adjacent construction equipment and to provide a firm "anchor" from which the liner can be erected from the top down as excavation proceeds.

The pumping test which was performed by the LDE at the proposed North Shaft indicates that dewatering of the groundwater within the pervious gravelly silty sand stratum at the rock/soil interface would be feasible using deep wells screened within the fractured rock. However, there would still be residual water that would flow into the shaft excavation, especially from the fractured rock zone. A combination of grouting between the lining and ground and using gasketed liner segments would restrict this seepage.

The silt and clay content in the till which is as high as 50 percent indicates that the till has a low hydraulic conductivity (refer to section 4.40). Groundwater control within this material will therefore not be a major issue. However, groundwater within the more pervious granular strata above the till will have to be controlled with shallow wells or steel sheeting driven into the glacial till. Due to the approximately 5-foot groundwater level tide fluctuation, steel sheeting may be more appropriate.
B. Concrete Diaphragm Wall - A closed ring of concrete wall panels built in bentonite slurry supported trenches, with or without encased soldier piles. The
wall can be used as part of the final structure thereby reducing cost.

Considerations include:

- Adequate competent rock should be left at the toe of the wall to provide adequate bearing capacity as the excavation continues through rock, below the toe.
- Wall panel excavation may be impeded due to the dense to very dense glacial till. Even though boulders were not encountered within the till during the subsurface investigation, the cobbles that were observed may be an indication that boulders do exist. Boulders within the till could delay construction.
- A flush contact between adjoining panels may be difficult to achieve on a consistent basis. Consequently, leakage at some of the joints should be expected.

It may be difficult to develop an adequate groundwater seal within the permeable gravelly silty sand stratum at the rock/soil interface, due to the boulders and the weathered, fractured top of rock. Consequently, groundwater pressure relief wells may be necessary within the shaft area prior to excavation. This would limit the chances of the excavation bottom becoming quick. Grouting of the soil/rock interface and the fractured top of rock may be required to achieve an effective seal.

To avoid trench instability, the slurry should be maintained at least 3 to 5 feet above external groundwater level during construction. The fact that construction in saline water, due to its greater density, requires a greater head of slurry than construction in fresh water should be considered. Furthermore, as groundwater level has a tidal fluctuation of approximately 5 feet, continual monitoring will be necessary.

- Increases in slurry density may make it difficult for the tremie concrete to properly displace the slurry. This may lead to inclusions of bentonite within the concrete, poor bonding to steel, and associated loss of concrete quality. Density tests should be performed, e.g. using a mud scale,
on slurry samples taken about a foot above the bottom of the trench prior to concreting.
- Excessive salinity changes the electrolytic properties and may lead to flocculation of the bentonite particles. This could make it more difficult for the slurry to form an effective cake and may lead to fluid loss. The problem would be especially acute in the relatively pervious strata below and above the till. To avoid this problem, the bentonite should be hydrated with fresh water. There are several instances of successful diaphragm wall construction immediately adjacent to bodies of salt water.
C. Ground Freezing - Lowering of the ground temperature to freeze interstitial water in the submerged portion of the overburden and upper portions of the rock. This improves ground behavior due to a decrease in permeability and an increase in mechanical strength. The Contractor may then excavate the frozen soil and fractured rock at the interface using drill and blast techniques. Thereafter, a temporary lining, consisting of cast-in-place concrete or steel liner plate with ring beam or precast liner with ring beam, can be placed and the freezing equipment removed.

Considerations include:

- The actual freezing has to be started well in advance of excavation to enable the method to take effect. Consequently, there may be some delay while waiting for the ground to freeze.
- Only the soil below the groundwater table will be frozen. Consequently, the lateral pressure due to the soil above the groundwater must be supported by an alternate method such as steel sheeting or soldier pile and lagging, driven down to an adequate depth below the low tide water level.
- Special care must be taken when drilling the holes and placing the freeze pipes to achieve proper alignment. The pipes must be inserted several feet below the fractured rock zone to accomplish watertight closure of the frozen zone. This is a critical part of the operation, in that if freeze pipes are out of line, closure of the freeze wall might not occur resulting in a leak or concentrated stress condition. The boulders at the soil/rock interface, and probably within the till as well, may cause misalignment of the holes.
- Temperature measurements of the frozen ground must be performed, using thermal transducers in special boreholes, to obtain direct feedback on the efficiency of the system. It is recommended that this be supplemented with a pressure relief hole, drilled near or at the center of the proposed shaft location. When closure of the ice occurs, there would be a surge of water from the hole. This observation, combined with measurements that confirm sub-freezing temperatures, indicate that freezing is continuous around the intended zone of construction (O'Rourke, 1978).
- Freezing may cause a layer of ice to form between the shaft lining and adjacent soil. Furthermore, the frozen soils will resist compression and infiltration when grouting behind the lining. When thawing occurs, voids could form throughout the zone bordering the shaft and possibly cause lining deformation and loss of ground. This problem can be limited by carefully grouting behind the liner in two stages - a short time after the lining is placed and after freezing has been stopped and thermal sensors indicate a return to temperatures above freezing.
- The costs related to ground freezing are cumulative. They increase with the duration of the project as the expense of running the equipment increases, or, in the case of nitrogen, as the nitrogen losses accumulate. Consequently, this method will probably be relatively expensive. Furthermore, the method may be slower than the other two. However, it may be the most positive solution to controlling groundwater at the soil/rock interface.
D. Combined System - This would consist of constructing the upper portion of the shaft in one of several ways, in combination with freezing of the lower portion of the overburden and top of rock. Feasible options for the upper portion include:

1. A slurry wall taken down to just below the top of till. For this case, dewatering would not be necessary. However, the excavation rate may be slow due to the dense to very dense glacial till, which may also contain boulders.
2. A soldier pile and lagging system taken down to a depth of about 70 feet (within the till). The
fill would have to be dewatered using shallow wells or steel sheeting could be driven into the till to serve as a groundwater cut-off.
3. Steel liner plate supported by steel ring beams, or a precast concrete segment liner system. The fill would also have to be dewatered using shallow wells or steel sheeting driven into the till to serve as a groundwater cut-off.

Temporary support in rock shall include rock bolts and shotcrete, with welded wire fabric reinforcement, installed primarily to ensure against minor rock fragment fallout that might endanger personnel in the shaft.

### 5.25 Groundwater Control - Shaft

The 25-foot-thick stratum of boulders, sand and silt, underlying the till at this site at a depth of 106 to 131 feet (elevation +18.8 to -6.2 feet), is the critical stratum regarding groundwater problems during construction. If this stratum is not properly dewatered or groundwater is not effectively cut off prior to excavation, the pervious nature of the stratum and the high head of water could result in the bottom of the shaft "blowing" during excavation.

Based on the LDE's pumping test results, it is believed that three or more dewatering wells in the immediate vicinity of the shaft will collectively yield less than $1,200 \mathrm{gpm}$. It is very probable, however, that these wells will not result in a dry condition at the soil/rock interface. This is because the soil appears to have a significantly higher hydraulic conductivity than the rock. Therefore, regardless of the preconstruction dewatering efforts, it is believed that without grouting or other cut-off, such as a slurry wall or freezing, groundwater will flow into the shaft. The volume of flow will be dependent upon a number of factors including: the number and efficiency of dewatering wells, the selected method of construction, and the method of grouting.

Design of the groundwater control system is left up to the Contractor, with review of the proposed method by the CM. The following systems are considered feasible:

Deep wells: Three or more wells would be screened through the aquifer into the fractured bedrock. The system should be effective in fractured rock and moderately effective in sand and gravel (Guertin and McTigue, 1982). However, to achieve a near dry condition within the shaft excavation, the wells would
probably have to be supplemented with grouting, especially at the soil/rock interface.

- Concrete diaphragm wall: The primary problem with this cut-off method is that it may be difficult to develop an adequate groundwater seal within the permeable gravelly silty sand stratum at the rock/soil interface, due to the boulders and the weathered, fractured top of rock.
- Freezing: This method requires highly specialized contractors but if properly performed, it may be a positive solution to controlling groundwater at the soil/rock interface.

Regardless, of the method selected, sumping within the excavation will probably be necessary; it appears that salinity concentrations will increase with time.
5.26 Design of Permanent Lining - Shaft

A combination of reinforced and unreinforced cast-in-place concrete permanent lining would be the most effective alternative over precast concrete segments due to the versatility of continuous steel form construction and ease of forming smooth transition curves and bends at shaft connections to tunnels to reduce hydraulic head loss due to friction. Furthermore, as the North Shaft excavation diameter will be reduced to a finished diameter of 16 feet above and 11 feet below elevation 80 feet, the most viable option for the formation of the resultant thick lining is cast-in-place concrete. Cast-in-place concrete liners also tend to resist groundwater leakage better than precast segments which may leak at the joints if not sealed properly.

The groundwater at the proposed North Shaft location fluctuates between approximately elevation 104.5 and 109.5 feet, and the water surface within the shaft during a surge may rise to a maximum elevation of approximately 120 feet. Surge conditions may therefore create a maximum differential head of approximately 15.5 feet. The permanent concrete lining should therefore be designed to keep stresses due to this surge as well as external soil and groundwater pressures (including when the shafts are empty) within allowable limits.

### 5.27 SSPS Conduit

An approximately 145-foot-long (from shaft center line to 2 feet into the SSPS), ll-foot-finished-diameter connecting conduit, with an invert elevation of 61 feet, is to be constructed at the North Shaft (refer to Figures 2.1 and 4.4). The conduit will connect the South System Pumping Station (SSPS) to the proposed North Shaft.

Construction of the conduit tunnel is expected to be by hand-mining methods, using a simple shield, or other approved mining method. A shield is basically a steel cylinder which is jacked ahead by thrusting against the in-place liner. The shield provides temporary support of the soil and allows excavation to proceed at the tunnel face. Liner segments are erected in the tail of the shield, in preparation for the next shield advance.

The conduit will be constructed through silty clay and glacial till. Even though boulders were not encountered within the till during the subsurface investigation, the contractor should be prepared for their existence. Boulders reduce excavation progress, and critical ground losses can occur when the boulders are only partially within the tunnel profile. Unless some method of supporting the irregular opening left by the removal of the boulder is provided, large ground settlements can occur. Boulders can be removed by breaking them up with hydraulic splitters and normal mucking procedures.

For the proposed conduit invert, the glacial till and silty clay have a stability factor (ratio of overburden pressure to undrained shear strength) of approximately 2 to 3. Experience has shown that stability numbers of less than 5 indicate an essentially stable tunnel heading (Cording et al., 1975). Consequently, the stand-up time of the till and clay should be sufficient for installation of the primary liner before significant movement of the soil has occurred. Stand-up time is the time that elapses between the exposure of an unsupported area of soil in the tunnel and the beginning of noticeable movements of the ground at this area. Except for occasional lenses of water-bearing sand, seepage of groundwater into the excavation is not expected to be a problem, especially as the till typically has a high percentage of relatively low permeability clay and silt.

Based on Peck et al. (1976), settlement of the ground surface, due to conduit construction, could be as much as 2 to 3 inches.

### 5.28 Surge Storage Structure

A cast-in-place concrete surge storage structure is to be constructed near the North Shaft (refer to Figures 2.1 and 4.4). The structure will be 46 feet by 96 feet in plan, at an invert elevation that ranges between approximately 97 and 99 feet. A 17.5-foot-long (from finished face of shaft to surge structure) cast-in-place concrete conduit, with an internal width of 8 feet and an invert elevation ranging between 111.0 and 111.5 feet, will connect the storage structure to the shaft. The purpose of the surge storage structure is to store excess effluent from the Inter-Island Tunnel during a sudden surge.

The subsurface conditions at the proposed surge structure location are based on boring LDE-46 (which is not within the proposed footprint) and are therefore assumed to be similar to those for the proposed North Shaft location. For generalized subsurface soil conditions refer to Figure 4.4 which indicates that the bottom of the excavation will probably be on glacial till.

A boring is to be performed within the proposed surge structure footprint. Data from the boring will not be available prior to issuance of this report. However, the data will be available for the Contractor prior to construction.

If space allows, construction of the storage structure can be performed in an open properly dewatered cut with slopes not exceeding 1.5 horizontal to 1 vertical. Alternatively, steel sheeting with internal bracing or soldier piles and lagging can be used as the lateral soil support system. The support system must be left in place and cut off to approximately 5 feet below proposed finish grade. The estimated lateral earth pressures are as shown in Figure 5.2. Furthermore, this structure has been designed to resist hydrostatic uplift corresponding to a groundwater elevation of 119.5 feet. This groundwater elevation is the LDE determined maximum flooding condition.

The advantage of sheeting is that, provided it is driven into the till, it would cut off the groundwater from the construction area, thereby reducing the need for significant pumping. Soldier piles and lagging would require shallow wells to dewater the pervious soil above the till. Boulders within the till, which would hinder the installation of either system, should be expected. Continuous interlocked steel sheeting can be damaged by obstructions relatively easily, thereby reducing its effectiveness as a groundwater cut-off. Soldier piles, however, can be withdrawn and moved or driven or drilled past boulders. It is therefore a more flexible system for dealing with obstructions.

The connecting conduit is expected to be constructed in a manner similar to the surge storage tank. Concrete for the conduit will probably be cast directly against the lateral soil support system which will be left in place and cut off to approximately 5 feet below proposed finish grade. The top of the finished conduit will be approximately flush with the ground surface.

### 5.29 Instrumentation

Excavation of the North Shaft could cause horizontal and/or vertical displacement of the surrounding ground. Based on o'Rourke (1989), Goldberg et al. (1976), and assuming good
workmanship during shaft excavation, estimates of displacements due to the support systems discussed in Section 5.24 are as shown on Table 5.2 below. These displacements are for ground surface points along a circumference approximately 15 feet from the edge of the shaft excavation.

TABLE 5.2
Estimates of Vertical and Horizontal Displacement Due to Shaft Construction

| Support <br> System | Estimated Displacement, <br> Vertical <br> Settlement Heave | inches. <br> Horizontal <br> Towards <br> Excavation <br> Excavation |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| Ground Freezing | $2.0-4.0$ | $2.0-4.0$ | $2.0-4.0$ | $2.0-4.0$ |
| Diaphragm Wall | $1.5-3.0$ | 0.0 | $1.0-2.0$ | 0.0 |
| Liner Plate | $2.0-4.0$ | 0.0 | $2.0-4.0$ | 0.0 |

Four inclinometers should be installed to monitor horizontal ground displacements. Monitoring of these displacements during shaft excavation will provide a means of assessing whether the earth support system is performing adequately. Proposed locations and depth of installation are as indicated on the contract drawings.

In addition, three piezometers should be installed next to the proposed shaft, prior to construction. The purpose of the piezometers is to monitor that groundwater pore pressures do not exceed anticipated levels during construction. Locations and depth of installation will be as directed by the CM.

The contractor should monitor these instruments in accordance with the schedule in Section 02295, Part 3.05, of specifications unless otherwise agreed with the CM. Monitoring frequency should be increased if the need arises.

### 5.30 SOUTH SHAFT

### 5.31 General

Based on information provided by the LDE, the proposed South Shaft will be located at 747,715.00 feet E; 466,600.00 feet $N$ (Mass. Grid, 1927). As this will not be a primary tunnel construction access shaft, the excavated diameter for the south

Shaft will be governed primarily by the required finished diameter of 16 feet and whether the Contractor elects to remove the TBM via this shaft.

### 5.32 Geotechnical Design Parameters

The geotechnical design parameters used to compute the lateral pressures on the initial and final support systems are shown on Table 5.1. The parameters were selected based on soil classification, laboratory tests, standard penetration tests (SPTs), and experience. The subsurface profile for structures constructed on Nut Island was based primarily on borings LDE-58 and LDE-69.

For the initial structures, groundwater elevation was assumed to be 116.6 feet, which is the FEMA predicted stillwater storm surge elevation, with a return period of 50 years; and for final structures, groundwater was assumed to be at elevation 122.3 feet, which is the projected 100-year surge level at Nut Island for the year 2100. These groundwater elevations are the LDE determined maximum flooding conditions.

### 5.32.1 Shaft Structures

The methods of analysis are as outlined in Section 5.22.1 and the recommended design pressures are shown on Figure 5.1. Estimates were performed for excavation diameters of 16,20 , and 24 feet.

### 5.32.2 Nut Island Conduit

A cast-in-place concrete conduit, with a 12-foot-square internal cross-section, will connect the Grit Removal Facilities Structure (GRFS) to the South Shaft. Based on borings LDE-58 and LDE-69, this structure will be constructed within cohesionless and cohesive soil (refer to Figures 2.2 and 4.5).

## Temporary Lateral Pressures

For the temporary excavation condition, two cases were evaluated: (a) no dewatering and (b) dewatered. The lateral earth pressure evaluations were performed as follows:

Case (a): No dewatering
Using the parameters shown on Table 5.1 and assuming active conditions, the total lateral pressures due to the soil and groundwater were derived using both drained and undrained analysis and the results plotted on the same graph. The effective force due to the soil pressure obtained by the drained analysis method was increased by 40 percent and redistributed into a trapezoidal pressure, in accordance with Terzaghi and

Peck's classic method. This soil pressure and the hydrostatic groundwater pressure were assumed to be the total pressure that would act on the initial lateral earth support structure. The recommended lateral pressures are shown on Figure 5.3.

Case (b): Dewatered
The same analysis as outlined for case (a) above was also performed for this case. The main difference was that the excavation was now assumed to be dewatered, with groundwater down to bottom of excavation, and the total force due to the pressure envelope from the two analysis was increased by 30 percent prior to redistribution. The recommended design lateral earth pressure is as shown on Figure 5.3.

## Permanent Lateral Pressures

Lateral pressure for the final Nut Island conduit was also estimated using effective stress analysis. For the cohesionless materials, the pressures were assumed to be due to at-rest ( $\mathrm{K}_{0}$ ) conditions and $\mathrm{K}_{0}$ was estimated using Jaky's equation (refer to Table 5.1 for values). For the cohesive materials, permanent pressures were assumed to be due to an effective horizontal to vertical stress ratio of approximately 0.5 (assuming insignificant creep). The recommended design pressure is shown on Figure 5.3.

## Permanent Vertical Pressures

An evaluation of the vertical stress, due to overburden and construction traffic, that would act on the crown of the conduit was performed using the method for shallow pipes and conduits outlined in NAVFAC Design Manual DM-7.1 (May, 1982). As the vertical stress evaluation depends on the excavation width, it was assumed that the excavation for the conduit would extend no more than 1 foot beyond the boundaries of the structure and the walls would be l-foot-thick.

### 5.33 Shaft Excavation in Soil and Rock

Excavation considerations in soil and rock are as described in Section 5.23.

### 5.34 Temporary Lateral Support in Soil - Shaft

Shaft excavation will involve constructing an initial lateral support wall down to sound bedrock to retain the soil as the excavation proceeds. Selection of a support system should be left to the contractor, with detailed design by the contractor subject to review by the $C M$. Of particular importance will be watertightness.

The support systems described in Section 5.24 would also be feasible at this shaft location. However, as the pervious stratum between the till and top of rock at Deer Island was not observed at this location, and the soil overburden is only 95 feet, soldier piles and lagging in the till may be a less expensive system.

Support of the granular fill can probably best be achieved by internally supported steel sheeting driven through the fill into the underlying glacial till. The sheeting will also serve as a groundwater cut-off. Difficulty may be encountered driving steel sheeting through a potentially very dense sand and gravel layer immediately overlying the glacial till.

The use of soldier piles and lagging in conjunction with dewatering of the granular fill and sand and gravel stratum overlying the glacial till will incur risks due to difficulties associated with dewatering pervious strata 70 feet $\pm$ from the shoreline. Once the excavation has been successfully advanced into the glacial till, soldier piles and lagging or liner plates could be used to provide support down to the bedrock surface. Some excavation into the rock and grouting will probably be required to seal the soil/rock interface.

### 5.35 Groundwater Control - Shaft

Unlike the North Shaft, at this location there is no pervious stratum between top of rock and the glacial till. Furthermore, the LDE-58 boring log does not indicate significant fracturing at the top of rock. Nevertheless, as top of rock generally tends to be fractured and waterbearing, the Contractor should be prepared to grout during construction should that be the case.

Design of the groundwater control system should be left up to the Contractor, with review of the proposed method by the CM. It is anticipated that the dewatering system will probably consist of steel sheeting driven into the till to cut off groundwater, supplemented with grouting at the soil/rock interface.
5.36 Design of Permanent Lining - Shaft

Design issues are as outlined in Section 5.26. The primary differences are that the South Shaft excavation diameter will be reduced to one finished diameter of 16 feet; the groundwater at the proposed shaft location fluctuates between approximately elevation 107.0 and 117.0 feet; and the water surface within the shaft during a surge may rise to a maximum elevation of approximately 113 feet, thereby creating a maximum differential head of approximately 6 feet.

Thirty feet of an 80-foot-long, 12-foot-square, cast-inplace concrete conduit, with an invert elevation of 95 feet, will be constructed at Nut Island. This conduit will connect the Grit Removal Facilities Structure (GRFS) to the South Shaft (refer to Figures 2.2 and 4.5). The relatively shallow depth of excavation makes this suitable for a soldier pile and lagging or steel sheeting lateral soil support system, with internal bracing.

The advantage of sheeting is that, provided it is driven into the till, it would cut off the groundwater from the construction area, thereby reducing the need for pumping. However, soldier piles and lagging would require shallow wells to dewater the pervious soil above the till. Boulders within the till, which would hinder the installation of either system, should be expected. For the sheeting, boulders could damage the sheeting, thereby reducing its effectiveness as a groundwater cut-off. For the soldier piles, preaugering would become necessary. Concrete for the conduit will probably be cast directly against the lateral soil support system which must be left in place and cut off to approximately 5 feet below proposed finish grade. Removal of lateral support elements from below structure elevation could result in settlements due to lost ground.

### 5.38 Instrumentation

Four inclinometers and three piezometers should be installed near the proposed South Shaft, and monitored as outlined in Section 5.29.
5.40 INTER-ISLAND TUNNEL

### 5.41 General

The proposed tunnel will have a minimum excavated diameter of 13.8 feet (the actual excavation size will be determined by the Contractor), a finished diameter of 11.5 feet, two 14-inchinternal diameter, concrete encased sludge pipes clamped every 20 feet along one of the lower quadrants of the tunnel and $a$ 12-inch-internal diameter drop shaft at Long Island (at Station $80+30$ ). The tunnel will extend from Deer Island to Nut Island and will be approximately 25,160 feet long. The proposed alignment has a dog-leg to avoid a depressed, poor quality bedrock area located between Nut Island and Rainsford Island, due, west of Peddocks Island.

The proposed tunnel will pass through five lithologic zones. These zones are described in Section 4.33.1 and illustrated on Figures 4.6 through 4.8.

### 5.42 Vertical and Horizontal Tunnel Alignment

Initially, the tunnel alignment was to be a straight line between Nut Island and Deer Island. However, due to a subsurface profile developed by Weston Geophysical, Inc. (subcontracted to the LDE) using seismic reflection and refraction survey data which they obtained in February 1989, as well as data obtained by others, the alignment was subsequently altered by adding a dogleg west of Peddocks Island. The data had indicated the existence of a deep depression (of apparent elevation -180 feet) in the bedrock surface in an area located between Nut Island and Rainsford Island, due west of Peddocks Island.

Ocean Surveys, Inc., as sub-consultant to the PDE, performed additional geophysical surveys (reflection and refraction) within the apparently depressed area. The results confirmed the existence of the major fault/depression that had been disclosed in Weston Geophysical's earlier survey. The data suggest that this "fault" has a westerly strike. However, top of rock within this depressed area appears to be at an approximate elevation of -40 to -85 feet instead of the -180 feet previously implied. For more details, refer to OSI's report which is attached as part of the "Geotechnical Data Report".

Borings 89-110 and 89-111 which were subsequently performed in the area, prior to the OSI geophysical survey, also indicate that top of rock is not that deep (elevation -12 to -47 feet). However, the area has several zones of poor quality rock which gave RQD values of as low as 0 percent (refer to logs for the two borings). These zones may have been the primary cause for the misinterpretation of top of bedrock during previous geophysical surveys. OSI used the data from boring 89-111 to interpret their geophysical survey data.

Under the direction of Appalachian Coal Surveys, Weston Geophysical performed down hole testing using stacked hydrophones in borings 89-105, 89-110, 889-111 and 89-113. The upper sections of the rock in the four borings yielded the following rock velocities: 17,800 feet per second (top 45 feet) in 89-105; 10,100 feet per second (top 17 feet) in 89-110; 12,300 feet per second (top 75 feet) in $89-111$; and 11,200 feet per second (top 30 feet) in 89-113. Rock velocities over full depths of the four borings ranged between 10,100 and 20,400 feet per second. This variability and the fact that velocity ranges for soft rock and till appear to overlap also contributes to the difficulty in evaluating top of rock based on an assumed velocity.

Vertical alignment was governed primarily by the following four factors:

- The need to stay, as much as possible, within good quality rock;
- Maintaining an approximately 70-foot minimum rock cover of reasonably sound rock;
- Maintaining a tunnel invert slope of about 0.25 to 0.30 percent for gravity drainage to the North Shaft, the main working shaft during construction and permanent operation; and
- Providing the shallowest depth shafts possible within the above restraints, for economy of shaft construction.

The anticipated tunnel invert elevation along the alignment of between -100 and -165 feet satisfies these three factors.

### 5.43 Excavation

Drill and blast techniques, tunnel boring machines (TBMs), and point-attack boom type machines, could be used to excavate this tunnel. Each of these methods has advantages and disadvantages in terms of speed, safety, suitability to the ground conditions and flexibility to changes in those ground conditions.

The anticipated rock strengths and length of tunnel would generally preclude use of a point-attack boom type machine except for possible localized special excavations. These types of machines are not considered further in this report.

Drill and Blast
This has been the most commonly used method of excavation in Boston and is known to be effective in these rock conditions. The main advantage over a full-face TBM is that the method has great flexibility and can be used in virtually all rock conditions. However, its main disadvantages include the following:

- A slower rate of advance (estimated at about 25 to 30 feet per day, based on two to three blast and muck cycles).
- Lack of detailed control of the size and shape of the excavation, e.g., overbreak usually results which increases the muck and concrete quantities.
- Blasting process produces an unavoidable loosening of the rock surrounding the opening.
- Generally uneconomical if used to excavate tunnels that are longer than 10,000 feet (Sinha, 1989).


## Tunnel Boring Machine

For the subsurface conditions along the proposed tunnel alignment, a TBM would probably provide the fastest rate of excavation (estimated by the PDE to be an average of 95 feet per day for the duration of tunnel excavation). The main advantages of a TBM are:

- Rapid excavation of the tunnel. The quartz content of the argillite is high (estimated to typically range between 15 and 30 percent). However, as the quartz grains appear to be mostly silt or clay size, they will probably not have the high wear rate on cutters suggested by the high content.
- Limited overbreak and disturbance of the surrounding rock.
- Reduced costs over drill and blast methods resulting from greater labor productivity.
- Safer construction than drill and blast methods.

Disadvantages of a TBM are:

- High initial cost. However, this can probably be offset by reduced total labor costs as a result of faster advance rates.
- A TBM is designed for particular ground conditions and should actual ground conditions differ, such as shear or fault zones, the capacity of the TBM to adapt to changes in rock quality can be limited. Hand-mining methods could be needed to overcome such difficulties in extreme cases.

In view of the length of the tunnel (approximately 25,160 feet), the time constraints, and the prevailing rock strengths, a TBM is considered the most appropriate choice for tunnel excavation. Short sections of altered and/or kaolinized argillite may be encountered in which the TBM could experience problems due to slip of gripper pads in weak material or clogging of cutting and mucking systems. This impact is expected to be limited. The data also suggest that blocky ground, which could impede progress, will be encountered.

As the subsurface data for the tunnel indicate that fault zones will probably be encountered during excavation at the locations indicated on the subsurface profile as well as other unidentified locations, contingency plans must be available for advance probing and/or ground treatment ahead of the face (refer
to section 5.45). It is quite possible that within these zones, a combination of high groundwater inflows and poor rock may necessitate the installation of significant amounts of support close to or at the face. Advance probe drilling and forward grouting could reduce the impact of these conditions.

Drill and blast will be appropriate for shaft excavation through rock and for excavation of the bottom station area, tail tunnel and bell out section of the tunnel at the base of the North Shaft; and the stub tunnel at the base of the south Shaft.

Orientation of the rock bedding and discontinuities is variable (refer to Figures 4.11 and 4.12). However, the effect of these features relative to tunnel construction is more pertinent for drill and blast methods than for a TBM excavated tunnel. The orientation of these features is of less concern, but should be considered by the Contractor relative to rock breakage and support requirements.

The PDE anticipates that the Contractor will overbore the tunnel to provide for steering tolerances by increasing the diameter in the order of 4 inches. The lining thickness design accounts for a minimum lining thickness that can be permitted when formwork is set to proper alignment within a wandering actual excavation.

### 5.44 Rock Support Requirements

The tunnel will be constructed primarily in Cambridge Argillite. Although the Argillite is expected to be competent (moderately blocky, with widely spaced joints, to blocky and seamy) in most locations, the tunnel will probably also pass through diabase intrusions, fault zones and zones of altered Argillite.

Terzaghi (Proctor and White, 1968) defines "moderately blocky" rock as that which contains joints and hair cracks but the blocks between joints are locally grown together or intimately interlocked. "Blocky and seamy" rock consists of chemically intact or almost intact rock fragments which are entirely separated from each other and imperfectly interlocked.

The $R Q D$ of the rock at the tunnel horizon was generally good to excellent ( 61 to 100 percent), from approximate Station 10+00 to 150+00 (Deer Island south to the area west of Rainsford Island) and from approximate Station $200+00$ to $261+60$ (the bend in the alignment south to Nut Island). In the tunnel sections between these areas the RQD was measured between 0 and 70 percent indicative of a generally fair to locally very poor rock quality.

From the area south of where the tunnel passes under Long Island to the bend in the alignment, the joints in the rock are commonly filled with gouge or are slickensided. The slickensides are more common immediately south of Long Island and at the bend.

For purposes of estimating the required support for tunnels constructed in rock, there are several empirical rock classification methods. It is emphasized that all rock rating systems are approximate. Considerable geologic and engineering judgment must be exercised in applying calculated results to final designs. The three methods described below are considered to be the most common and were reviewed for applicability to this project. Design criteria for the temporary tunnel supports are based on these systems and described in Section 5.46.

## Rock Mass Quality (0)

This method was developed by Barton et al. in 1974 and 1975 by considering data from approximately 200 tunnel and large underground chamber case records (included 13 igneous, 24 metamorphic, and 9 sedimentary rock types). The method assigns indices to the following parameters:

- RQD
- Joint set
- Joint roughness
- Joint alteration
- Joint water (Reduction Factor)
- Stress (Reduction Factor)
to arrive at a combination of these numbers called $Q . Q$ can be related to permanent/temporary crown and wall support in a given tunnel, underground station or shaft. This method is generally applicable to large underground openings.


## Rock Structure Rating (RSR)

This method was developed by Wickham et al. in 1974 for rapid transit tunneling using 53 case histories for 8- to 36-foot-diameter tunnels. The RSR is similar to the $Q$ method, but has fewer parameters. RSR is the sum of three parameters, $A$, $B$ and $C$ which are defined as follows:

A: Represents general geology of rock mass including influences by rock type, strength and geological structure (folds and faults)

B: Represents discontinuity spacing, strike, dip, and the tunnel direction in relation to discontinuity characteristics

C: Represents groundwater and discontinuity characteristics

The RSR number is related to the required steel rib supports (spacing, size), or rock bolts (length, spacing), or shotcrete (thickness).

Rock Mass Rating (RMR)
This method was developed by Bieniawski (originally proposed in 1973) and evaluates 6 parameters which significantly influence behavior of rock mass. For this project, the latest version (Bieniawski, 1988) of the system was evaluated. The six parameters are:

- Uniaxial compressive strength
- Rock quality designation (RQD)
- Joint spacing
- Joint condition
- Groundwater inflow
- Joint orientation relative to proposed excavation

The rock mass is categorized into five classes, indices of parameters are assigned, and a summation of the indices (index for joint orientation has a negative value) defines the rock quality and leads to an estimate of the required rock support.

This classification system is also used for estimates of stand-up time, however, field observations indicate that the estimates are conservative. Assuming this tunnel will be excavated by TBM, stand-up time will not be a significant issue.

Based on this review, it was concluded that the RMR method by Bieniawski was most appropriate for this project, primarily because it is based on tunnels constructed in sedimentary rock formations.

Consequently, the primary method used to evaluate the rock quality for tunnel constructability relative to tunnel excavation and rock support requirements was the latest version (Bieniawski, 1988) of Bieniawski's Rock Mass Rating (RMR) system. A comparison check of the rock ratings was made using the Rock Structure Rating (RSR) developed by Wickham et al. (1974) and Burton's Q system.

The systems provide an index rating of the rock based on various parameters such as strength, joint spacing, joint condition, groundwater inflow, and orientation. The RMR and $Q$ systems also rate the RQD of the rock whereas the RSR system considers the structural geology of the rock. It should be noted, however, that orientation of the rock discontinuities relative to the tunnel has a lesser importance concerning the
rock rating when a TBM is used rather than conventional drilling and blasting.

The overall rating of the RSR method, when taking an adjustment factor of 1.19 into account for a TBM as recommended by Skinner (1988), is higher than the RMR method which does not consider the method of excavation in the rating. Nevertheless, the agreement between the two methods was very good when comparing the relative condition of the entire rock along the alignment. A summary of the rating results is shown on Figures 5.4 through 5.6.

The RMR system identifies rock quality classes as follows:
Less than 20 points: Class 5 - very poor rock
21 to 40 points: Class 4 - poor rock
41 to 60 : Class 3 - fair rock
61 to 80: Class 2-good rock
81 to 100: Class 1 - very good rock
For the overall tunnel length the rock can generally be classified as a fair to good rock for tunneling with overall RMR and RSR ratings averaging 52 and 64 , respectively, for the 20 borings that were analyzed. An adjustment factor of 19 percent has been incorporated into the RSR values to account for the tunnel size and use of $a$ TBM and the values have also been weighted by the length of tunnel that the various borings represent. The exceptions are the values for borings LDE-46 and 89-117 which are assumed to be in the area that will be developed using drill and blast techniques instead of a TBM. The rating for the rock at the tunnel horizon at each boring along the route is shown on Figures 5.4 through 5.6.

The averaged rock rating values of the rock for the RMR and RSR systems at the tunnel horizon of each boring are plotted on Figure 5.7. An adjustment factor of 19 percent has been incorporated into both the RMR and RSR values, except for borings LDE-46 and 89-119, to account for the tunnel size and use of a TBM. The figure shows the good overall agreement of the two rating systems. The tunnel rock is anticipated to be very good (RMR of 81-100) at the Nut Island end of the tunnel. In between, generally fair to good tunneling rock conditions (RMR of 41-80) are expected, except the section where the tunnel approaches the bend. In this latter section, the RMR is poor, in the range of 8 to 38. The fair and poor rated rock is anticipated in the areas indicated as fault zones on Figures 4.6, 4.7 and 4.8.

Four types of temporary support systems are anticipated as indicated on the contract drawings. These support systems are described below and illustrated on Figure 5.8. A correlation of rock class to ground support requirements has been developed by
the PDE. These correlations have been arrived at based on the collective judgment of the design team.

Type I Support - No Support to Occasional Rock Bolts
Type I support (refer to Figure 5.8) is expected to be utilized along approximately 9 percent of the tunnel, where the RMR rating ranges between 73 and 100. The rock is selfsupporting in this condition, and spot rock bolts will be installed for safety only, as needed.

Type II Support - Systematic Rock Bolting with WWF
Type II support (refer to Figure 5.8) is expected to be utilized along approximately 65 percent of the tunnel, where the RMR rating ranges between 57 and 73. Rock bolts with 1/4-inch by 4-inch steel straps, installed 4 feet on center, and WWF are anticipated.

## Type III Support - Steel Ribs and Steel Mat Lagging

Type III support (refer to Figure 5.8) is expected to be utilized along approximately 21 percent of the tunnel, in areas where the RMR rating ranges between 30 and 57. The use of W5 $x$ 16 steel ribs, installed 4 feet on center, expanded against the rock and preloaded by jacking, is anticipated. The ribs can be installed in three or four segments at the Contractor's option. Rock support between the ribs will be provided by 120-degree coverage with special design steel mat lagging.

## Type IV Support - Steel Ribs, Steel Mat Lagging and Shotcrete

Type IV support (refer to Figure 5.8) is expected to be utilized along approximately 5 percent of the tunnel, in areas where the RMR rating is less than 30, e.g. where there is crushed rock, highly altered rock, and where the frictional gripping resistance for the TBM is inadequate. The use of W 5 x 16 ribs, installed 4 feet on center, expanded against the rock, and preloaded by jacking, is also anticipated. Rock support between the ribs will be provided by 270 degrees of the same steel mat lagging, plus 2 inches of shotcrete infill between ribs placed as soon as practical behind the TBM.

The rock loading on the tunnel for the various classes of rock has been determined using the Barton $Q$ system. These ratings and the corresponding design values are presented in Table 5.3. The corresponding RMR range used in the $Q$ system development of the rock load is also presented in this table along with the other design parameter values used for each support type.


## DEFINITIONS

ksf = KIPS PER SQUARE FOOT.
psf = POUNDS PER SQUARE FOOT.
$H=$ DEPTH FROM GROUND SURFACE TO BOTTOM OF EXCAVATION (ft.).
Hs $=$ DEPTH TO TOP OF BEDROCK.
$y=$ DEPTH TO TOP OF CONSTANT PRESSURE.
G.W.T. = GROUND WATER TABLE.
G.S.E. = GROUND SURFACE ELEVATION.
$h_{W}=$ ASSUMED GROUNDWATER DEPTH FOR DESIGN: TEMPORARY STRUCTURES STILIWATER STORM SURGE ELEVATIONS FOR 50-YEAR RETURN PERIOD FEMA); THE YEAR 2100 (FEMA).
$P_{w}=$ HYDROSTATIC PRESSURE BASED ON $h_{w}$
$P_{1}, P_{2}=$ CALCULATED LATERAL EARTH PRESSURES TO BE USED IN DESIGN OF INITIAL AND FINAL RETAINING STRUCTURES
GNEN ARE FOR THE SPECIFC' DEPTHS INDICATED.
$P_{h}=$ TOTAL LATERAL FORCE CAUSED BY A POINT OR LINE LOAD (Ibs. per ft. of wall)
$Z=$ DEPTH FROM GROUND SURFACE TO SOME POINT BELOW (ft.)
Qp $=$ SURCHARGE LOADING CONSIDERED AS A POINT LOAD AS FROM AN ISOLATED FOOTNG OR CONSTRUCTION LOAD (lbs.).
$Q_{L}=$ SURCHARGE LOAD CONSIDERED AS A LINE LOAD AS FROM OONINUOUS FOOTING PARALIEL TO THE EXCAVATON OR A CONSTRUCTION LOAD (Ibs.).
$X=$ DISTANCE FROM THE EXCAVATION TO THE APPROPRIATE SURCHARGE LOAD (ft.).
$m_{1} n_{0}=$ DIMENSIONLESS DESIGN PARAMETERS.
$\sigma_{h}=$ HORIZONTAL PRESSURE ON A VERTICAL PLANE AT SOME POINT AT
belo the Ground surface due to a die or pon
$\sigma_{h}^{\prime}=\begin{aligned} & \text { HORIZONTAL PRESSURE AT SOME POINT ALONG THE SUPPORT } \\ & \text { DUE TO A POINT OR LNE LOAD SOME DISTANCE AWAY (psf.). }\end{aligned}$. $\quad$ SOL
$\theta=$ ANGLE BETWEEN THE VERTICAL PLANE OF THE POINT LOAD PERPENDICULAR TO WALL AND THE POINT ON THE WALL WHERE THE LATERAL PRESSURE is DESIRED (DEGREES).
$D=$ CONSTRUCTON SHAFT DAMETER (FT.).
$B=$ WIDTH (20-30 FEET) $\mathbb{N}$ WHICH CONSTRUCTION OR TRAFFIC SURCHARGE IS TO BE CONSIDERED.
$R=$ LOCATION OF RESULTANT $\left(P_{h}\right)$ ABOVE THE BOTTOM OF EXCAVATION (FT.)

## NOTES:

1. FOR DESIGN OF INITIAL EXCAVATION SUPPORT SYSTEMS CALCULATIONS MAY BE BASED ON THE ASSUMPTION THAT THE EXCAVATION IS DEWATERED, WHEN CONSTRUCTED WIN SOLDER SOLES ND LAGGING, OR WHEN POSTIVE METHODS OF DRAINING THE SOIL ARE USED.
2. FOR DESIGN OF FINAL SHAFT STRUCTURES,

CALCULATIONS ARE BASED ON THE ASSUMPTION' THAT AT REST (KO) CONDITIONS WIL BE ATTAINED AND LAIERAL SN APPROXIMATELY FOUR TMMES THE SHAFT EXCAVATION DIAMETER.
3. FOR DESIGN OF THE FINAL CUT AND COVER CONDUIT STRUCTURE AT NUT ISLAND CALCULATION ARE BASED ON
AT REST (KO) CONDTIONS WIL BE ATIANED.
4. LOADS FROM NEARBY STRUCTURES ARE TO BE DETERMINED BY THE CONTRACTOR AND REVIFWED BY THE ENGINEER. STRUCTURES OUTSIDE CONTRACTOR AND REVIEWED BY THE ENGINEER. STRUCIURES
A $1: 1$ INFLUENCE UNE GENERALLY NEED NOT BE CONSIDERED.
5. FOR EVALUATION OF THE LATERAL PRESSURE UNDER A GVEN SET OF CONDPOSE, LI LATERAL PRESSURE DUE TO SOLL AND WATER
6. IF ANY LOADINGS OCCUR WHICH ARE NOT DESCRIBED HEREIN ADEQUATE MEASURES MUST BE TAKEN
SUBJECT TO REVEW BY THE ENGINEER.
7. THE FIGURES SHOWING ADDTIONAL LATERAL PRESSURES DUE TO SURCHARGE LOADS ARE BASED ON THOSE IN "LATERAL SUPPOR
SYSTEMS AND UNDERPINNING DESIGN FUNDAMENTALS. VOL.2." B GOLDBERG ET AL,1976.






File No. U-11305.1


NOTE: NO ADJUSTMENT MADE FOR ROCK RATING VALUES FOR
TUNNEL IN BELL-OUT AREA (LDE-46 AND 117)

| LEGEND: |  |
| :---: | :--- |
| $\square$ | ADJUSTED RSR |
| $x$ | ADJUSTED RMR |
| NOT ADJUSTED |  |
| 102 | BORINS NUMBER |


| Evardrup | macoova Bon min <br> Jacobs Associates Coldberg-Zolno a Associetes Delon Hampion Assoclates | $D P-5$ <br> INTER ISLAND TUNNEL boston harbor | ROCK RATINGS ALONG TUNNEL ALIGNMENT NOV. 1989 <br> FIGURE No.5.7 |
| :---: | :---: | :---: | :---: |

FILE Nu. U-11305.I


TABLE 5.3
tunnel rock loading

| RMR <br> Rating <br> Range | Support <br> Type | Barton system Rating <br> Q | Rock <br> Ht. <br> Ft. | Rock <br> Load <br> psf | Modulus of <br> Deformation <br> ksi | Poisson <br> Ratio | K $_{0}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $>73$ to 100 | 1 | 75 | 3.0 | 1.8 | 300 | 5,000 | .25 | .33 |
| $>57$ to 73 | 11 | 5.5 | 2.0 | 6.7 | 1,100 | 650 | .30 | .43 |
| $>30$ to 57 | III | 0.61 | 1.0 | 27.0 | 4,500 | 200 | .32 | .47 |
| $<30$ | IV | 0.14 | 1.0 | 50.0 | 8,200 | 60 | .34 | .52 |

5.45 Groundwater Control

As the intact rock is relatively impervious, groundwater will infiltrate the tunnel via joints, cracks, shear zones, or faults. If control of this water is inadequate, stability problems and difficulties could arise. For this tunnel, the problems may be related to:

- High volumes of water that are difficult to handle and that can erode the joint filling materials, thereby destabilizing the rock blocks.
- Water pressure that acts on joint surfaces, reduces the effective stress and destabilizes rock blocks, even if the flows are small.
- Water chemistry, e.g., the salinity could cause corrosion of excavation equipment.
- Water so deep in the invert that it interferes with TBM and mucking activities.
- Water pressure around the tunnel causing kaolinized and/or altered argillite to squeeze into the tunnel. This is a possibility only if large zones of kaolinized or altered argillite are encountered.

The groundwater inflow in the tunnel has been estimated using data from packer tests that were conducted during both the 1988 and 1989 marine exploration programs and data reviewed
regarding the measured water inflow into the Main Drainage Tunnel during its construction in 1956 and 1957 (Hellstrom, 1989).

The data from the packer testing in the borings have been reduced to the permeability values shown on Figures 5.4 through 5.6. These values typically range from $\leq 0.1 \times 10^{-5}$ to $50 \times 10^{-5}$ $\mathrm{cm} / \mathrm{sec}$. along the alignment.

Estimates of flow into the proposed tunnel were based on a direct relation of packer test surface area to tunnel surface area. This approach is approximate and assumes a hydraulic gradient (i) of 1 and that Darcy's Law is valid. A comparison of the total inflow estimate ( $56 \mathrm{gpm} / 1,000$ feet) for the proposed tunnel, based on this approximate approach, with an estimate ( $66 \mathrm{gpm} / 1,000$ feet) based on the inflow data collected during construction of the Main Drainage Tunnel (Hellstrom, 1989), after adjustment for the difference in surface area of the tunnels, indicates that the results are comparable.

In several cases where poor quality rock (RQD less than 50 percent) was encountered, the water inflow was low. This was probably due to clay in-filling of the joints.

Along the alignment, a high inflow of water of approximately 200 to $300 \mathrm{gpm} / 1,000$ feet of tunnel, can be expected from the southern end of Deer Island to the northern approach to Long Island. Similar high inflows can be expected in the vicinity of boring 89-106.

More moderate inflows of 50 to $100 \mathrm{gpm} / 1,000$ feet of tunnel can be expected along the alignment just south of Long Island. A lesser inflow of 25 to $50 \mathrm{gpm} / 1,000$ feet is expected in the section from the bend southward.

In other sections of the alignment the groundwater inflow is expected to be less than $25 \mathrm{gpm} / 1,000$ feet.

Potential groundwater inflow problems can be identified prior to excavation by probe drilling in advance of the excavation face. However, the requirement of carrying an advance bore hole at all times would cause substantially lower progress and increase costs. It is probably advisable to probe ahead in identified critical areas. Consequently, it is proposed that probe drilling be performed at the probable fault areas indicated on the subsurface profile (Figures 4.6 through 4.8) and other areas of concern to be designated by the CM or Contractor.

Based on the evaluation of groundwater inflow data for tunnels constructed in the same rock formation around Boston and the packer test results along the alignment, total inflows of approximately 1,900 to $3,200 \mathrm{gpm}$ are expected during excavation. The most efficient way of handing the water inflow may be to
accept the flow during excavation and then drain it to the North Shaft by gravity. A tunnel invert slope of 0.25835 percent has been designed to facilitate gravity drainage of the expected inflows and maintain water depths to manageable levels. With a lesser grade, it might be necessary to use a series of sumps from the heading to the shaft, pumping from one to the next. In a bored tunnel, it is difficult to excavate such sumps, as the drill-and-blast excavation requires substantial protection for installed power cables, ventilation pipes, and other facilities and thus must be performed during TBM shutdowns.

Though the overall average pumping is expected to be manageable, local inflows at the heading may be severe enough to affect TBM operations. If the problem is foreseen during the progress of the tunneling operation, it might be possible to overcome by cement or chemical grouting techniques ahead of the tunnel face. If the problem occurs unexpectedly, a quick-set cement-chemical or acrylate grout may be effective in halting the flow.

It should also be noted that local flows may affect concrete lining placement. In such an event, the contractor will have to fissure grout such areas in order to reduce water inflow to an extent that it can be diverted away from the pour area. Where ponding, panning, or other means can be used to keep the concrete area free from standing water, fissure grouting is not essential.

Note that borings 89-110 and 89-114 are within the limits of the proposed tunnel excavation and borings 89-106, 89-108 and 89-116 are approximately 16 to 25 feet off the center line of the proposed alignment. These holes along with all the others were grouted on completion. However, if the grouting was not fully effective, seepage could occur at those locations that are intersected by the tunnel. The Contractor should therefore be prepared for such a possibility.

### 5.46 Design of Permanent Lining

The LDE identified three types of permanent liners: cast-inplace concrete (CIPC), precast concrete segmental lining, and a composite of a CIPC lining and precast concrete segments.

The primary advantage of precast concrete segments is that the casting and curing of the concrete in a yard produces a stronger, more dense and water-resistant concrete than can possibly be placed in the tunnel. However, segments have the following drawbacks:
A. Heavy erection equipment is required to handle the heavy segments and this results in more difficulty in the limited space of the tunnel. This is particularly
true in a medium size tunnel of significant length such as this one.
B. Precast segments are prone to leak through cracks caused by improper handling (during transportation and/or setting) and TBM•jacking loads.
C. While gaskets may help seal the segments, it may be difficult to keep the gaskets from ripping or contamination when handling and placing segments.

CIPC lining is superior from the viewpoint of hydraulic head friction loss and for sealing off groundwater infiltration by grouting methods. Furthermore, CIPC is believed to at least be equal in overall costs to the unbolted precast segmental lining due to the much slower TBM progress to be expected with that system. Its main disadvantage is the concrete placement time constraint which depends on the set time and haul distance within the tunnel.

Nevertheless, CIPC liners have already proved to be troublefree for about 30 years on the Boston Main Drainage Tunnel and for 80 years on water supply tunnels in New York City. Given the criteria of a 100-year design life and desired zero operational downtime, a CIPC lining with contact grouting is considered to be the best option for this tunnel.

Circumferential shrinkage cracks at more or less regular intervals of 20 to 30 feet should be expected in a CIPC liner. Most of these cracks will be surficial and not extend through the lining. Others will undoubtedly show signs of leakage, but can be sealed by grouting if the leakage is excessive. It is believed that these cracks will not be harmful to the service life of the tunnel, especially as shrinkage is to a considerable extent almost reversible. Therefore, no special measures, e.g. longitudinal crack-control reinforcement steel, mandatory spacing of vertical construction joints, or waterstops in construction joints, are required to control them. Experience shows that shrinkage-control reinforcing steel is only moderately successful and is quite expensive.

Steel fibers can reliably inhibit cracking and improve material deterioration from shrinkage and/or thermal stresses by limiting the width of CIPC shrinkage-temperature cracks. However, due to high costs and placement difficulties, it is the PDE's opinion that its use for this tunnel is not warranted. Consequently, it is proposed that the tunnel lining be unreinforced except in areas where substantial zones of kaolinized argillite or fractured rock are encountered.

Where a substantial zone of kaolinized argillite or a fault zone with clayey gouge is encountered, the concern is that the internal hydraulic pressure will cause the concrete lining to expand and fail. This is because both the kaolinized argillite (a stiff clay) and the fault zones have much lower subgrade moduli than rock. In these areas, type IV support (refer to Figure 5.8) will be installed and the CIPC liner will be reinforced (as shown on Contract Drawing No. E1 S-01 and El S-02) with steel to:

1. Reduce crack width from internal pressure, and
2. Strengthen the lining to resist bending moments caused by vertical rock loads.

The circumferential lining reinforcement has been chosen to resist the design condition of maximum internal water pressure and assumed zero external hydrostatic pressure.

Ground successfully excavated as Type III support, may subsequently show signs of distress prior to placement of final lining. Based on field observations and judgment, the $C M$ may require installation of steel reinforcement. In this case, payment for the reinforcement steel will be at the unit price established in the contract for the reinforcement required in type IV support ground.

### 5.47 Long Island Drop Shaft

The Long Island drop shaft will be constructed at Station $80+30$. It will consist of a 12-inch (I.D.) ductile iron pipe grouted into a hole that will have minimum excavation diameters of 24 and 20 inches in the soil and rock, respectively. Drilling through overburden will be performed using slurry (drilling mud) or other appropriate means of temporary support. The shaft will probably be constructed prior to tunnel excavation.

Boring 90-118 was performed at the proposed drop shaft location. The boring indicates that the subsurface conditions consist of (in descending order): 7.5 feet of fill; 13 feet of gravelly sand; 15.5 feet of silty clay; 54.3 feet of till; all underlain by argillite.

### 5.50 SEISMIC DESIGN CONSIDERATIONS

Portions of Weston Geophysical's May 1989 report entitled, "Seismic Design Recommendations" and the LDE's May 1989 report entitled, "Conceptual Design - Tunnel Seismic Assessment and Design Criteria" were reviewed. In addition, Adhya's (1989) chapter on "Underground Structures through Seismic zones" was also reviewed.

For the design of the DP-5 tunnel, two earthquakes have been defined in the LDE's document: The Maximum Design Earthquake (MDE), which has a mean return period of several thousand years, and the Operating Design Earthquake (ODE) which has a mean return period of several hundred years. Peak ground motion for the ODE is specified as 0.125 g acceleration and 2 inches/second velocity. Peak ground motion for the MDE is specified as 0.25 g acceleration and 4 inches/second velocity.

### 5.51 Shafts

Reports of damage to shafts due to earthquake effects are few. Based on the limited information available, Schmidt and Richardson (1989) draw the following conclusions:

- Shafts are inherently more resistant to earthquake effects than are surface structures.
- The effect of earthquakes on shafts diminishes with depth. Shaft damage near the surface, when it occurs, is often caused by shifting of earth or liquefaction.
- The damage typically experienced is predominantly circumferential cracking, with less common cracking in axial and diagonal directions.
- Though fallout of plaster and loosened brick has been observed, shaft structures tend to resist collapse.

No shaft liner distress has been reported for Modified Mercalli intensities below VIII.

The soil at the proposed shaft locations is not expected to fail during an earthquake. Furthermore, as indicated in Section 4.50, a maximum credible event at cape Ann (which poses the greatest threat to Boston) of intensity IX would cause a general intensity effect in the Boston region with intensity level VIII.

Based on the above information, it has been concluded that seismic criteria do not control the design of the proposed shafts.

### 5.52 Tunnel

The response of an underground structure to shaking will be influenced by the shape, depth of excavation, the properties of soil and rock mass around the opening, and the intensity of ground motion. Based on data compiled by Dowding and Rozen (1978), no damage should be experienced by an underground structure in rock if the particle velocity due to ground motion is below $20 \mathrm{~cm} / \mathrm{sec}$.

Furthermore, the following observations have been made concerning the damage due to shaking:

- Of the damage modes which can occur during shaking of concrete-lined tunnels, only the cracking of the lining is possible.
- No damage has occurred to lined or unlined tunnels at surface accelerations below 0.19 g which is greater than the assumed ODE value of 0.125 g .
- Little damage has occurred to rock tunnels at surface accelerations of less than 0.4 g which is greater than the MDE value of 0.25 g .

Based on the above information, it has also been concluded that seismic criteria do not control the design of the proposed Inter-Island Tunnel.

### 5.60 DISPOSAL AND USE OF EXCAVATED MATERIALS

The construction of the Inter-Island Tunnel will produce a bulked muck volume of approximately 250,000 cubic yards (c.y.). Most of the muck will be removed via the North Shaft with only approximately $7,000 \mathrm{c} . \mathrm{y}$. being removed via the South Shaft. The muck removed via the North Shaft will be temporarily stored at a central location on Deer Island. The muck disposal will be performed under a separate contract.

Based on Kaiser Engineers, Inc.'s "Comprehensive Geotechnical Program Report", dated June 1989, the excavated muck is expected to have the following grain size distribution:

| gravel size | $:$ | $30-50$ percent by weight |
| :--- | :--- | :--- |
| sand size | $:$ | $40-50$ percent by weight |
| silt size | $:$ | $10-20$ percent by weight |

The gravel size portion of the muck is not expected to be suitable for use as concrete aggregate primarily because it is anticipated that it will contain a significantly larger quantity of thin, flat, elongated rock pieces than is permitted by the Massachusetts Department of Public Works Specifications.

However, this does not preclude its use in construction on Deer Island. The excavated muck is expected to be of sufficient consistency and uniformity to serve as a good pavement subbase. The material is easily spread and requires no extraordinary effort to attain sufficient in-place density. It is expected that earth-moving equipment will be able to move over this material readily.

The muck may also be used on site as unspecified fill to raise grade and as fill for sight and noise barriers, between settling ponds and clarifiers, etc.

## REFERENCES

Adhya, K.K., 1989: "Underground Structures through Seismic Zones", in Sinha, R.S., ed., Underground Structures, Design and Instrumentation, Elsevier Science, pp. 276-294.

Bailey, R.H., 1987: "Stratigraphy of the Boston Bay Group, Boston Area, MA", in Roy, D., ed., Geological Society of American Centennial Field Guide - Northeastern Section, pp. 209-212.

Bailey, R.H., Newman, W.A. and Genes, A., 1976: "Geology of the Squantum "tillite" ", in Cameron, B., ed., Geology of Southeastern New England, NEIGC Guidebook, Science Press, Princeton, N.J.

Barosh, P.J., 1989: "The Hazard From Earthquakes in the Boston Area", Civil Engineering Practice: Journal of the Boston Society of Civil Engineers Section/ASCE, Vol.4, No.1, pp. 65-78.

Barosh, P.J., Kaye, C.A. and Woodhouse, D., 1989: "Geology of the Boston Basin \& Vicinity", Civil Engineering Practice: Journal of the Boston Society of Civil Engineers Section/ASCE, Vol.4, No.1, pp. 39-52.

Barosh, P.J., 1984: "Regional Geology and Tectonic History of Southeastern New England", Hanson, L.S. ed., Geology of the Coastal Lowlands Boston, MA to Kennebunk, ME, NEIGC Guidebook, Dept. of Geology, Salem State College, Salem, MA.

Barton, N., Lien, R. and Lunde, J.; 1975: "Estimation of Support Requirements for Underground Excavations", Proceedings, 16th Symposium on Rock mechanics, Minneapolis, Minn., pp. 335343.

Barton, N., Lien, R. and Lunde, J., 1974: "Engineering Classification of Rock Masses for the Design of Tunnel Support", Rock Mechanics, Vol.6, No.4, pp. 189-236.

Bieniawski, Z.T., 1988: "Bieniawski on Rock Mass Rating System", in Kirkaldie, ed., Rock Classification Systems for Engineering Purposes, ASTM ST 984, pp. 17-34.
Bieniawski, Z.T., 1973: "Engineering Classification of Jointed Rock Masses", The Civil Engineer in South Africa, South African Institution of Civil Engineers, Transvaal, S.A., pp. 335-342.

Billings, M.P., 1976: "Geology of the Boston Basin", Lyons, P.C., and Brownlow, A.H., eds., Studies in New England Geology: Geol. Society of America, Memoir 146, pp 5-30.

Billings, M.P. and Tierney, F.L., 1964: "Geology of the City Tunnel Extension, Greater Boston, Massachusetts", Journal of the Boston Society of Civil Engineers, Vol. 57, pp. 111-154.

Cording, E.J., et. al., 1975: "Methods for Geotechnical Observations and Instrumentation in Tunneling", Report of National Science Foundation Research Grant GI-33644X, pp 84.

Department of the Navy, 1982: "Soil Mechanics", NAVFAC Design Manual 7.1.

Dowding, C.H. and Rozen, A., 1978: "Damage to Rock Tunnels from Earthquake Shaking", Journal of American Society of Civil Engineers, Geotechnical Division, Vol. 104, No. GT2, pp. 175-191.

Errico, J.V. and von Rosenvinge IV, T., 1986: "101 Federal street Foundation Design", paper presented at the ASCE 1986 Annual Convention and Geotech IV Conference, Boston, Massachusetts.

Fitzgerald, D., 1984: "Coastal Geology of Winthrop, MA", in Hanson, L.S., ed., Geology of the Coastal Lowlands Boston, MA to Kennebunk, ME, NEIGC Guidebook, Dept. of Geology, Salem State College, Salem, MA.

Goldberg, D.T., Jaworski, W.E. and Gordon, M.D., 1976: "Lateral Support Systems and Underpinning, Vol.II, Design Fundamentals", Contract Report No. FHWA-RD-75-129, Federal Highway Administration, U.S. Department of Transportation, Washington, D.C.

Goldberg, D.T., Jaworski, W.E. and Gordon, M.D., 1976: "Lateral Support Systems and Underpinning, Vol.III, Construction Methods", Contract Report No. FHWA-RD-75-130, Federal Highway Administration, U.S. Department of Transportation, Washington, D.C.

Guertin, J.D. and McTigue, W.H., 1982: "Groundwater Control in Tunneling, Vol. 3, Recommended Practice", Contract Report No. FHWA-RD-81-075, Federal Highway Administration, U.S. Department of Transportation, Washington, D.C.

Hanson, L.S., 1984: "Quartenary Geology and Geomorphology", in Hanson, L.S., ed., Geology of the Coastal Lowlands Boston, MA to Kennebunk, ME, NEIGC Guidebook, Dept. of Geology, Salem State College, Salem, MA.

Hellstrom, D.I., 1989: "Recollections \& Photographs, Boston Main Drainage Tunnel, 1954-1957", for the MWRA.

Johnson, E.G., 1989: "Geotechnical Characteristics of the Boston Area", Civil Engineering Practice: Journal of the Boston Society of Civil Engineers Section/ASCE, Vol.4, No.1, pp. 53-64.

Kaiser Engineers, Inc., June 1989: "Comprehensive Geotechnical Program Report", for the MWRA.

Kaye, C.A., 1984: "Boston Basin Restudied", in Hanson, L.S., ed., Geology of the Coastal Lowlands Boston, MA to Kennebunk, ME, NEIGC Guidebook, Dept. of Geology, Salem State College, Salem, MA.

Kaye, C.A., 1982: "Bedrock and Quaternary Geology of the Boston Area, Massachusetts", Geological Society of America Reviews, Engineering Geology, Vol. v, pp. 25-40.

Kaye, C.A., 1980: "Bedrock Geologic Maps of the Boston North, Boston South, and Newton Quadrangles, Massachusetts", U.S. Geol. Survey Misc. Field Studies, Map MF-1242, scale 1:24,000.

Kaye, C.A., 1979: "Engineering Geologic Framework of the Boston Basin", in Hatheway, A.W., ed., Engineering Geology of New England, ASCE Preprint No. 3602.

Kaye, C.A., 1967: "Kaolinization of Bedrock of the Boston, Massachusetts Area", U.S. Geological Survey, Professional Paper 575-C, pp. C165-C172.

Kaye, C.A., undated: "The Brewster Island Sill - Swarm of Layered Olivine Diabase", Abstract from unpublished notes, compiled by Metcalf. \& Eddy, Inc. for the United States Geological Survey.

Metcalf \& Eddy, Inc., November 30, 1989: "Aquifer Test Interpretive Report, Deer Island", for the MWRA.

Metcalf \& Eddy, Inc., June 16, 1989: "Geotechnical Interpretive Report - Tunnels, Shafts and Diffuser", Volumes 1, 2, 3 and 4, for the MWRA.

Metcalf \& Eddy, Inc., May 31, 1989: "Conceptual Design - Tunnel Corrosion Engineering", for the MWRA.

Metcalf \& Eddy, Inc., May 31, 1989: "Conceptual Design - Design Package 5, Inter-Island Tunnel \& Shafts", for the MWRA.

Metcalf \& Eddy, Inc., May 1989: "Boston Harbor Geological and Geotechnical References", Volumes 1 and 2, for the MWRA.

Metcalf \& Eddy, Inc., May, 1989: "Conceptual Design - Tunnel Seismic Assessment and Design Criteria", for the MWRA.

Metcalf \& Eddy, Inc., March, 1989: "Secondary Treatment Facilities Plan - Volume IV - Inter-Island Conveyance System Final Report", for the MWRA.

Metcalf \& Eddy, Inc., February, 1989: "1988 Marine Drilling Summary Report", Volumes 1 and 2, for the MWRA.

New England Research, Inc., January 16, 1989: "Rock PropertiesSecondary Treatment Plant, Deer Island".

O'Rourke, T.D., 1989: "Predicting Displacements of Lateral Support Systems", Proceedings of the 1989 Seminar on Design, Construction, and Performance of Deep Excavations in Urban Areas, BSCES/ASCE, M.I.T.

O'Rourke, T.D., 1978: "Tunneling for Urban Transportation: A Review of European Construction Practice", Contract Report No. UMTA-IL-06-0041-78-1, Urban Mass Transportation Administration, U.S. Department of Transportation, Washington, D.C.

Peck, R.B., Hendron, Jr., A.J. and Mohraz, B., 1976: "State of the Art of Soft-Ground Tunneling", Proceedings, Rapid Excavation and Tunneling Conference, pp. 259-286.

Prater, E.G., 1977: "An examination of some theories of earth pressure on shaft linings", Canadian Geotechnical Journal, Vol. 14, pp. 91-106.

Proctor, R.V. and White, T.L., 1968 : Rock Tunneling with Steel Supports, Commercial Shearing and Stamping Company, Youngstown, Ohio.

Rahm, D.A., 1962: "Geology of the Main Drainage Tunnel, Boston, Massachusetts", Journal of the Boston Society of Civil Engineers, Vol. 49, pp. 310-368.

Richardson, S.M., 1977: "Geology of the Dorchester Tunnel, Greater Boston, Massachusetts", Journal of the Boston Society of Civil Engineers, Vol. 63, pp. 247-269.

Schmidt, B. and Richardson, A.M., 1989: "Seismic Design of Shaft Linings", Presented at the ASME Symposium on Recent Development on Lifeline Earthquake Engineering in Honolulu.

Sinha, R.S., 1989: "Underground Structures through Seismic Zones", in Sinha, R.S., ed., Underground Structures, Design and Instrumentation, Elsevier Science, pp. 1-33.

Skinner, E.H., 1988: "Skinner on Rock Structure Rating Model", in Kirkaldie, ed., Rock Classification Systems for Engineering Purposes, ASTM ST 984, pp. 35-51.

Tarkoy, P.J. and Hendron, A.J. Jr., 1975: "Rock Hardness Index Properties and Geotechnical Parameters for Predicting Tunnel Boring Machine Performance", Report No. NSF-RA-T-75-030, Research Applied to National Needs (RANN), National Science Foundation, Washington, D.C.

Tierney, F.L., Billings, M.P., and Cassidy, M.M., 1968: "Geology of the City Tunnel, Greater Boston, Massachusetts", Journal of the Boston Society of Civil Engineers, Vol 55, pp. 60-96.

Weston Geophysical, Corp, October, 1989: "Boston Harbor Seismic survey".

Weston Geophysical, Corp., May 1989: "Seismic Design Recommendations", prepared for Metcalf \& Eddy, Inc.

Weston Geophysical, Corp., September, 1988: "Coarse-Grid Marine Geophysical Surveys, Deer Island Secondary Treatment Facility", prepared for Camp Dresser \& McKee, Inc.

Wickham, G.E., Tiedmann, H.R., and Skinner, E.H., 1974: "Ground Support Prediction Model RSR Concept", Proceedings, Rapid Excavation and Tunneling Conference, San Francisco, Ca., pp. 691-707.

Williamson \& Associates, Inc., May 1990: "Results of the Multichannel Digital Survey for the Boston Harbor Project Inter-Island Area".

Wong, R.C.K. and Kaiser, P.K., 1988: "Design and Performance evaluation of vertical shafts: Rational Shaft Design Method and Verification of Design Method", Canadian Geotechnical Journal, Vol. 25, pp. 320-337.

Wong, R.C.K. and Kaiser, P.K., 1988: "Behaviour of Vertical Shafts: Reevaluation of Model Test Results and Evaluation of Field Measurements", Canadian Geotechnical Journal, Vol. 25, pp. 338-352.

APPENDIX A
SUMMARY BORING LOGS

## FIELD TEST BORING RECORD COVER SHEET



## BORING <br> SUMMARY LOG

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority
Coordinates: $\mathrm{N}: \mathbf{4 8 8 3 3 1 . 9 5 f t}$. E: $\mathbf{7 4 6 3 3 1 . 1 8 f t}$.


NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

## BORING SUMMARY LOG

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: N: 488331.95ft. E: 746331.18ft.


NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except *indicates axial. ** $=$ SOIL, Down Hole Hammer/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority
Coordinates: $\mathrm{N}: \mathbf{4 8 8 3 3 1 . 9 5 f t}$. E: 746331.18ft.
DESCRIPT
MAIN
ARGLLITE INTERBEDDED
WITH SANDY ARGILITE, and
fine Sandstone, gray to light gray,
hard to med. hard, slightly weathered;
thin bedding 15 to 35 deg.; joints
moderately closely spaced 45 to 75
deg.
$160.5-166.5$ ft.: Sandy argillite.

$166.5-171.1$ ft.: Bedded Argillite and
Sandstone dip 40 deg. at 166.5

Sandstone dip 40 deg. at 166.5 grading to horizontal at 169 ft .

FELSITE (Diorite), gray to grayish green, mottled; med. hard, slightly weathered, generally closely jointed throughout, many joints are slickensided or filled with quartz; generally fractured rock.
191.5-211.5 ft.: Oriented core.

ARGHLITE, gray, med. hard, slightly weathered; bedding thin to laminar, subhorizontal to 30 deg., occasionally 35-55 deg.; mod. closely spaced joints generally $30-45$ deg., parallel/subparallel to bedding; most joints filled with quartz and calcite. 201.5-206.4 ft.: Many bedding plane separations.
211.5-212.6 ft.: Preserved core.
217.3-217.9 ft.: Preserved core.
221.5-237.5 ft.: Oriented core.
calcite-filled joint. 143.0-144.0 ft.: Graded beds (possibly
turbidibes).
146.5 ft .: 55 deg .
calcite-filled joint.
147.1 ft .: 70 deg .
calcite-filled joint.
147.2 ft : 70 deg . calcite-filled joint. 156.7 ft .: Bedding nearly horizontal. $157.0-158.0 \mathrm{ft} .: 175 \mathrm{deg}$. calcite-filled joints. 158.8-160.3 ft.:

Discontinuities up to 6 mm wide filled with clay or gouge.
160.5-163.0 ft.: 75 deg . calcite-filled joints, clay in bedding plane separations. 163.0-165.0 ft.: Slumped bedding. 166.5 ft : Drilling stopped because shoe of core barrel was coming off.
170.5 ft .: 70 deg.
quartz-filled joint. quartz-174.5 ft:: Kaolinized argillite adjacent to 70 deg . calcite-filled joints $175.3 \mathrm{ft} .: 30 \mathrm{deg}$. quartz-filled joint. 176.5 ft : 80 deg . slickensided joint. 177.4-178.3 ft.: Pyrite mineralization. 177.4 ft .: 20 deg. quartz-filled joint. 178.4 ft . 80 deg. quartz-filled joint. $178.6 \mathrm{ft} . \mathrm{:} 80 \mathrm{deg}$. quartz-filled joint. $180.6 \mathrm{ft} .: 40 \mathrm{deg}$. quartz-filled joint. 181.3 ft .: 80 deg . quartz-filled joint. 182.3 ft : 40 deg . quartz-filled joint. 184.5 ft .: Occasional coarse quartz veins and quartz-filled vugs quartz-flled vugs
$185.2 \mathrm{ft}: 10$ deg. slickensided joint. 186.0 ft :: 80 deg. slickensided joint. 187.5 ft :: 70 deg. slickensided joint. 188.3 ft : 70 deg . slickensided joint. 189.1 ft .: 30 deg. quartz-filled joint. 191.5 ft :: 20 deg. slickensided joint. 192.1 ft :: 45 deg. slickensided joint. 193.1 ft : 70 deg. quartz-filled joint. 194.4 ft :: 20 deg. slickensided joint. 195.6 ft .: 70 deg .

Sea Floor Elevation: $\mathbf{4 2 . 5} \mathbf{f t}$. Total Depth Drilled: $\mathbf{2 8 7 . 7} \mathbf{f t}$.

## -

## -

GOLDBERG-ZOINO \& ASSOCIATES, INC.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority
Coordinates: $\mathrm{N}: 488331.95 \mathrm{ft}$. E: 746331.18ft.

Sea Floor Elevation: $\mathbf{4 2 . 5} \mathbf{f t}$.
Total Depth Drilled: 287.7 ft.
DESCRIPTIC

ARGILLITE INTERBEDDED
WITH SANDY ARGILLITE, dark
gray to light gray, hard, fresh appearance; bedding thin; $10-25$ deg. bedding massive in sandy zone. 237.7-241.0 ft.; widely spaced to moderately close joints, 30 to 70 deg.; two cleavages, dominant cleavage nearly 90 deg., second cleavage nearly parallel to bedding.

ARGILLITE, dark gray, hard, fresh to slightly weathered; bedding thin to laminar ocassionally massive; same two cleavages as above.

| 10 O |
| :---: |
|  |

273.0-287.7 ft.: Argillite shows chlorite alteration, rock quality deteriorates below 283.0 ft .
287.7 FT.: END OF BORING

## quartz-filled joint.

196.7 ft :: 45 deg . slickensided joint. 197.2 ft .: 50 deg . quartz-filled joint, 15 mm wide.
198.4 ft .: 85 deg . quartz-filled joint.
210.3 ft .: 60 deg.
quartz-filled joint.
214.7 ft : Network of
quartz veins.
215.5 ft .: 45 deg .
calcite-filled joint.
223.0 ft : 70 deg.
calcite-filled joint.
223.0-223.5 ft.:

Slumped bedding.
224.0 ft .: 70 deg .
calcite-filled joint.
225.5-225.9 ft.: Small offset along joint.
225.5 ft .: 45 deg . calcite-filled joints. 228.0 ft .: 70 deg.
calcite-filled joint.
230.1 ft :: Two conjugate 50 deg. joints.
235.5-236.4 ft.:

Slumped bedding.
237.2-237.7 ft.:

Slumped bedding, pyrite
mineralization.
239.5 ft : 70 deg .
calcite-filled joint.
241.0-243.0 ft.:

Slumped bedding.
241.0 ft .: Two
cleavages; primary is 90
deg., secondary is 30
deg
245.7 ft : 30 deg .
calcite-filled joint.
247.7-267.7 ft.: Only
three joints, 55 to 70
deg.
251.1-252.1 ft.:

Brecciated argillite.
252.4-252.6 ft.: Network
of calcite veins.
252.7 ft.: Coarse calcite
veins.
$256.5 \mathrm{ft} .: 60 \mathrm{deg}$.
calcite joint.
264.5-266.5 ft.: Chlorite
alteration.
269.3 ft .: 30 deg . joint.
273.4 ft .: 60 deg.
calcite-filled joint.
274.5 ft . 50 deg .
calcite-filled joint.
deg. calcite-filled
joints.
279.0 ft .: 60 deg .
calcite-filled joint 279.5 ft .: 60 deg. iron stained joint.
281.1 ft .: 20 deg.
calcite-filled joint.
$281.2 \mathrm{ft} . \mathrm{:} 20 \mathrm{deg}$.
calcite-filled joint.
281.7 ft .: 60 deg .
calcite-filled joint.
282.5 ft .: 30 deg .

NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test
corrected to 55 mm standard, diametric except ${ }^{*}$ indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{4 8 8 3 3 1 . 9 5 f t}$. E: 746331.18ft.

| DESCRIPTION |  | ${ }^{\text {popmata }}$ |  | ${ }_{\text {rec }}$ | Ac $\square_{\text {Reo }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | derall |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except ${ }^{*}$ indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

## FIELD TEST BORING RECORD COVER SHEET



## SUMMARY

SOIL DRILLED $\frac{51.0 \quad \text { (FT) ROCK CORED } 250.7 \text { (FT) }}{\text { (FT) }}$ NUMBER SPLIT

BARREL SAMPLES ---

## NOTES

1. The coordinate system used is the 1927 MASS GRID.
2. Datum is M.D.C.
3. In water borings, the split spoon sampler was driven into the soil by dropping a 175-pound sliding down hole hammer a distance of 4 feet within the borehole.
4. In land based borings the soil sampling method used was the STD Penetration Resistance using a 140 lb . hammer dropping a distance of 30 inches.


PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{4 8 6 5 6 3} \mathbf{2 4 f t}$. E: 746285.95ft.


NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test correct to 55 mm standard, diametric except ${ }^{*}$ indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority
Coordinates: N: 486563.24ft. E: 746285.95ft.


NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test correct to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{4 8 6 5 6 3 . 2 4 f t}$. E: 746285.95ft.

| DESCRIPTIO |  |
| :---: | :---: |
| MAIN |  |
| SANDY ARGILLITE and |  |
| ARGILLITE, gray, medium hard, |  |
| fresh to slightly weathered; beddingvaries from very thin to massive with |  |
|  |  |
| occasional slump features andmicro-faulting, 25 to 35 deg.; joints |  |
| are closely spaced, filled with, |  |
| calcite to 70 deartz and clay, generally 45 |  |
| ${ }_{151.5-156.5}^{\text {ft.: }}$ Massive fabric. |  |
|  |  |
|  |  |
|  |  |
| and 60 deg. cleavage. |  |

181.5-191.5 ft.: Many 30 deg. bedding plane separations with smooth surfaces.

## Āginitite interbèdeded

WITH SANDY ARGILLITE, gray or light gray or light green (sandy layers lighter color), hard, fresh to slightly weathered, bedding thin to very thin, 15 to 45 deg.; some slumped bedding most joints are healed and very closely to moderately closely spaced, filled with calcite or clay, dipping 20 to 40 deg.; occasional hairline joints; most breaks in core are due to drilling and occur along hairline healed fractures and/or bedding plane separations.
210.4-230.4 ft.: Oriented core. 217.0 ft .: Broke core to fit into core box.
221.5-231.5 ft.: Numerous 25 to 30 deg. bedding plane separations.
$153.0 \mathrm{ft} .: 85 \mathrm{deg}$ cleavage.
154.0-155.6 ft.: Massive fabric.
156.5-158.0 ft.:

Slumped bedding.
157.1 ft.: 25 deg. bedding with clasts of sandy argillite. 160.1 ft .: 25 deg . bedding with clasts of sandy argillite.
166.0 ft .: 40 deg. joint.
169.0-170.6 ft.:

Slumped bedding.
169.0 ft .: 60 deg . joint, smooth surfaces.
170.0 ft .: 70 deg. joint. 171.0 ft .: 40 deg. joint. 172.0 ft .: 60 deg.
cleavage.
184.2-184.7 ft.: Sandy argillite bed.
$190.5 \mathrm{ft} . \mathrm{S} .45$ deg. joint, crosscutting bedding.
194.8 ft .: Two 35 deg . joints.
197.0 ft : Pyrite mineralization. 199.3 ft : Pyrite mineralization.
214.3 ft.: Pyrite mineralization. 214.7 ft .: 45 deg. calcite-filled joint, smooth surfaces. 215.8-216.0 ft.: Slumped bedding. 217.4-220.0 Some bedding plane


Sea Floor Elevation: 61.4 ft . Total Depth Drilled: 301.7 ft .

## SUMMARY LOG

## SUMMARY LOG

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{4 8 6 5 6 3 . 2 4 f t}$. E: 746285.95ft.
247.5-251.5 ft.: Core was dropped before logged. Most breaks are due to the drop.
273.4-280.9 ft.: Closely spaced joints dipping 30 to 50 deg .

ĀGGLIITE, dark gray to light
gray hard, fresh to slightly
weathered; thinly bedded, 10 to 45 deg. with some slumped bedding; joints are close to very closely spaced, filled with calcite, 20 to 50 deg.
calcite-filled joint parallel to bedding 218.8-219.0 ft.: Slumped bedding. 220.0-221.5 ft.: Conglomeratic argillite. 221.7 ft .: 85 deg . hairline calcite-filled vein.
223.0 ft :- 30 deg . calcite-filled bedding plane separation. 223.2-224.9 ft.: Six hairline joints, 40 to 55 deg.
231.5-232.1 ft.: Slumped bedding. 236.0 ft .: 25 deg .
calcite vein.
236.3 ft .: 25 deg . calcite vein. 238.2 ft t: 40 deg. clay coated joint.
240.8-241.5 ft.:

Fracture zone.
240.8 ft .: 25 deg .
calcite vein.
240.8-241.5 ft.:

Slumped bedding with brecciated argillite. 246.3 ft .: 25 deg . calcite and pyrite filled joint.
248.6 ft.: Calcite vein 55 mm thick. 249.0 ft .: Conjugate 30 and 40 deg. joints. 251.5-252.5 ft.: Bedding plane separations, with no filling.
251.8 ft .: 30 deg . calcite vein, 3 mm wide. 253.5-255.7 ft.: Slumped bedding with clasts of argillite. 257.4 ft .: 25 deg . calcite veins. 263.6 ft .: 25 deg . clay-filled bedding plane separation.
263.9 ft .: 80 deg .
calcite-filled joint.
266.6-271.0 ft.:

Slumped bedding with argillite clasts. 271.2 ft .: 40 deg. calcite/clay vein, 6 mm wide.
276.6-277.1 ft.: Sandstone bed with calcite.
$286.5 \mathrm{ft} .: 50 \mathrm{deg}$. joint. $287.5 \mathrm{ft} .: 45$ deg. joint. $287.7-288.7 \mathrm{ft}$.: zone of calcite-rich lenses. 288.5 ft .: 70 deg . joint. 291.0 ft .: 85 deg . cleavage.
293.0-295.3 ft.:

Conglomeratic argillite
294.7-298.2 ft.:

Slumped bedding.
296.5 ft .: 50 deg. joint.

Sea Floor Elevation: 61.4 ft .
Total Depth Drilled: 301.7 ft.

## T-

| $\begin{gathered} \text { Depth } \\ (\mathrm{ftt}) \end{gathered}$ |
| :---: |
|  |  |

GOLDBERG-ZOINO \& ASSOCIATES, INC.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR Sea Floor Elevation: $\mathbf{6 1 . 4} \mathbf{f t}$. CLIENT: Massachusetts Water Resources Authority Total Depth Drilled: 301.7 ft . Coordinates: $\mathrm{N}: \mathbf{4 8 6 5 6 3 . 2 4 f t}$. E: 746285.95ft.


NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test correct to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

FIELD TEST BORING RECORD COVER SHEET


## NOTES

1. The coordinate system used is the 1927 MASS GRID.
2. Datum is M.D.C.
3. In water borings, the split spoon sampler was driven into the soil by dropping a 175-pound sliding down hole hammer a distance of 4 feet within the borehole.
4. In land based borings the soil sampling method used was the STD Penetration Resistance using a 140 lb . hammer dropping a distance of 30 inches.

| APPROVED | DATE |
| :---: | :---: |
| Dryetberf | $1 / 2 / 90$ |

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{4 8 4 7 3 7 . 4 0 f t}$. E: 746487.60ft.


NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 50 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, SPT/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority
Coordinates: $\mathrm{N}: \mathbf{4 8 4 7 3 7 . 4 0 f t}$. E: 746487.60 ft .


NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test
corrected to 50 mm standard, diametric except ${ }^{*}$ indicates axial. ${ }^{* *}=$ SOIL, SPT/Recovery in inches.

## BORING SUMMARY LOG

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: N: 484737.40ft. E: 746487.60ft.


NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 50 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, SPT/Recovery in inches.

## BORING SUMMARY LOG

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority
Coordinates: $\mathrm{N}: \mathbf{4 8 4 7 3 7 . 4 0 f t}$. E: $746487.60 f \mathrm{f}$.

| DESCRIPTION |  | $\begin{gathered} \text { Depth } \\ (\mathrm{ft.}) \end{gathered}$ | $\begin{gathered} \text { (1lev. } \\ (\mathrm{tt.} .) \end{gathered}$ | REC | RQD |  | $\begin{aligned} & \text { Pressure } \\ & \text { Test } \\ & \mathrm{K}=\mathrm{cm} / \mathrm{sec} \\ & (\mathbf{x} \mathbf{0 . 0 0 0 0 1 )} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MAIN | DETAIL |  |  |  |  |  |  |

232.5-242.5 ft.: Occasional bedding plane separations.
252.0 ft .: Lost drilling shoe down hole.
252.8-272.8 ft.: Oriented core.

ARGILLITE, dark gray hard,
slightly weathered; bedding
medium to very thin, occasionally massive, generally 20 to
30 deg. occasionally slumped bedding with nearly vertical orientation; joints moderately close to closely spaced, generally 20 to 60 deg.; occasional quartz and calcite veins generally locally concentrated, various orientations.
252.5-262.5 ft.: Lost shoe in hole and one scribe came loose, 20 perent of core is overdilled and has no scribe marks or 4 scribe marks.
262.5-282.5 ft.: Fabric generally massive.
280.0-282.1 ft.: Preserved core.
282.8-292.8 ft.: Oriented core.

ARGILLITE, dark gray hard, slightly weathered; bedding thin to very thin, 20 to 50 deg., occasionally slumped bedding with nearly vertical orientation; joints moderately close to very closely spaced, 40 to 65 deg., rarely 90 deg.; numerous harline quartz veins, various orientations. 292.5-302.5 ft.: Numerous vertical quartz veins.
227.0 ft .: Two intersecting cleavages at 10 and 20 deg.; 20 deg . cleavage is parallel to bedding.
229.0 ft .: Two
intersecting cleavages at 10 and 20 deg.; 20 deg. cleavage is parallel to bedding.
230.2 ft .: 65 deg. slickensided joint. 234.0 ft .: 50 deg . joint crosscutting bedding.
241.2-241.8 ft.:

Fracture zone.
244.0-245.0 ft.:

Numerous quartz veins, some clay.
245.5 ft .: Two
intersecting cleavages at 30 and 50 deg., 30 deg. cleavage is parallel to bedding.
246.5 ft .: Two
intersecting cleavages at 30 and 50 deg., 30 deg. cleavage is parallel to bedding.
248.0 ft .: 20 deg. joint parallel to bedding.
251.0 ft .: 75 deg . joint parallel to bedding.
254.0 ft .: 30 deg . joint 254.0 ft .: 30 deg. J.
254.1-245.3 ft.:

Numerous quartz veins, 10 to 30 deg. dip.
255.0 ft .: 30 deg. joint. 259.0 ft .: 45 deg. joint. 264.0 ft .: 50 deg. joints.
266.0 ft .: Two crossing joints 50 and 60 deg. 267.0 ft .: Two crossing joints 30 and 60 deg. 269.0-272.5 ft.:

Slumped bedding, 80 deg.
273.0 ft .: 90 deg. joint. 276.0 ft .: Slumped bedding.
277.0 ft .: 90 deg. quartz veins with random orientation.
278.0-282.5 ft.: Joints have substantial amount of chloritic infilling. 279.0 ft .: Two crossing joints at 60 and 70 deg. $283.5 \mathrm{ft} .:$ Fracture zone. 284.0 ft .: 80 deg. joint. 285.0 ft .: 30 deg , joint parallel to bedding.
294.0 ft .: 60 deg . joint crosscutting bedding. 296.0-298.0 ft.:

Fracture zone with network of hairline quartz veins and 60 deg.

Sea Floor Elevation: 119.8 ft .
Total Depth Drilled: 332.5 ft .

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{4 8 4 7 3 7 . 4 0 f t}$. E: 746487.60 ft .


NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 50 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, SPT/Recovery in inches.

FIELD TEST BORING RECORD COVER SHEET


PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{4 8 2 3 3 0 . 1 0 f t}$. E: 746407.38ft.


NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: N: 482330.10ft. E: 746407.38ft.

ARGILLITE INTERBEDDED WITH SANDY ARGILLITE, purplish gray, medium hard, slightly weathered; bedding very thin to laminar 10 to 50 deg.; joints very closely spaced, 45 to 90 deg.; most joints, veins, fractures infilled with clay, quartz and calcite.

TOP OF BEDROCK 89.5 FT

Roller bit to 94.1 ft .
96.3-97.4 ft.: Fracture zone.
98.3-99.1 ft.: Fracture zone with clay infilling.
102.4-102.7 ft.:

Fracture zone.
103.7 ft .: 45 deg .
slickensided joints and fractures.
105.0 ft .: 20 deg slickensided joints and fractures.
107.0 ft .: 50 deg.
slickensided joints and fractures.
116.8 ft .: Fracture zone infilled with clay.
123.0 ft .: 70 deg. joint.
125.9-126.6 ft.: Healed fracture zone.
126.0 ft .: 60 deg . joint.
127.0 ft .: 70 deg. joint. 128.2-129.1 ft.: Holes 1 to 3 mm wide in rock to 3 m
core.
130.1-130.7 ft.:

Fracture zone.
131.0 ft .: Fracture
filled with clay.
131.0-134.5 ft.:

Slumped bedding.
133.0 ft : 65 deg . joint with prominent slickensides.
134.5 ft .: 90 deg. joint with prominent slickensides. 137.1 ft : : Tuffaceous $137.1 \mathrm{ft} .:$
argillite.
139.1-148.4 ft.:

Abundant slumped bedding and

Sea Floor Elevation: 88.5 ft.
Total Depth Drilled: $\mathbf{3 1 8 . 1} \mathbf{f t}$.

DESCR
DESCR
(GC). (
ARGMLITE INTERBEDDED
WITH SANDY ARGILITTE,
greenish-gray to gray, mottled, med
hard, slightly weathered; bedding v
thin to laminar, 40 to 60 deg.; joint
moderately closely spaced, 50 to 75
deg.; joints, veins, and bedding plane
separations generally infilled with
clay, quartz, and calcite; occasional
green tuffaceous sandy beds, 5 to 10
mm thick; occasional slickensided
joint surfaces with microfaulting. (
ARGMLITE INTERBEDDED
WITH SANDY ARGILITTE,
greenish-gray to gray, mottled, med
hard, slightly weathered; bedding v
thin to laminar, 40 to 60 deg.; joint
moderately closely spaced, 50 to 75
deg.; joints, veins, and bedding plane
separations generally infilled with
clay, quartz, and calcite; occasional
green tuffaceous sandy beds, 5 to 10
mm thick; occasional slickensided
joint surfaces with microfaulting. ARGMLITE INTERBEDDED
WITH SANDY ARGILITE,
greenish-gray to gray, mottled, med.
hard, slightly weathered; bedding ver
thin to laminar, 40 to 60 deg.; joints
moderately closely spaced, 50 to 75
deg; joints, veins, and bedding plane
separations generally infilled with
clay, quartz, and calcite; occasional
green tuffaceous sandy beds, 5 to 10
mm thick; occasional slickensided
joint surfaces with microfaulting. (

ARGILLITE INTERBEDDED
WITH SANDY ARGIILITE,
greenish-gray to gray, mottled, med.
hard, slightly weathered; bedding very
thin to laminar, 40 to 60 deg.; joints
moderately closely spaced, 50 to 75
deg.; joints, veins, and bedding plane
separations generally infilled with
clay, quartz, and calcite; occasional
green tuffaceous sandy beds, 5 to 10
mm thick; occasional slickensided
joint surfaces with microfaulting. ARGILLITE INTERBEDDED
WITH SANDY ARGIILITE,
greenish-gray to gray, mottled, med
hard, slightly weathered; bedding ve
thin to laminar, 40 to 60 deg.; joints
moderately closely spaced, 50 to 75
deg.; joints, veins, and bedding plan
separations generally infilled with
clay, quartz, and calcite; occasional
green tuffaceous sandy beds, 5 to 10
mm thick; occasional slickensided
joint surfaces with microfaulting. (
ARGILLITE INTERBEDDED
WITH SANDY ARGILITE,
greenish-gray to gray, mottled, med
hard, slightly weathered; bedding v
thin to laminar, 40 to 60 deg.; joint
moderately closely spaced, 50 to 75
deg.; joints, veins, and bedding plan
separations generally infilled with
clay, quartz, and calcite; occasional
green tuffaceous sandy beds, 5 to 10
mm thick; occasional slickensided
joint surfaces with microfaulting. ARGMLITE INTERBEDDED
WrTH SANDY ARGILIITE,
greenish-gray to gray, mottled, med.
hard, slightly weathered; bedding ver
thin to laminar, 40 to 60 deg.; joints
moderately closely spaced, 50 to 75
deg.; joints, veins, and bedding plane
separations generally infilled with
clay, quartz, and calcite; occasional
green tuffaceous sandy beds, 5 to 10
mm thick; occasional slickensided
joint surfaces with microfaulting. (
ARGMLITE INTERBEDDED
WITH SANDY ARGILITTE,
greenish-gray to gray, mottled, med
hard, slightly weathered; bedding v
thin to laminar, 40 to 60 deg.; joint
moderately closely spaced, 50 to 75
deg.; joints, veins, and bedding plane
separations generally infilled with
clay, quartz, and calcite; occasional
green tuffaceous sandy beds, 5 to 10
mm thick; occasional slickensided
joint surfaces with microfaulting. (
ARGILLITE INTERBEDDED
WITH SANDY ARGILITE,
greenish-gray to gray, mottled, med
hard, slightly weathered; bedding v
thin to laminar, 40 to 60 deg.; joint
moderately closely spaced, 50 to 75
deg.; joints, veins, and bedding plan
separations generally infilled with
clay, quartz, and calcite; occasional
green tuffaceous sandy beds, 5 to 10
mm thick; occasional slickensided
joint surfaces with microfaulting. (

ARGILLTE INTERBEDDED
WITH SANDY ARGILITE,
greenish-gray to gray, mottled, med
hard, slightly weathered; bedding ve
thin to laminar, 40 to 60 deg.; joints
moderately closely spaced, 50 to 75
deg.; joints, veins, and bedding plan
separations generally infilled with
clay, quartz, and calcite; occasional
green tuffaceous sandy beds, 5 to 10
mom thick; occasional slickensided
joint surfaces with microfaulting. (
ARGMLITE INTERBEDDED
WITH SANDY ARGILITTE,
greenish-gray to gray, mottled, med
hard, slightly weathered; bedding v
thin to laminar, 40 to 60 deg.; joint
moderately closely spaced, 50 to 75
deg.; joints, veins, and bedding plane
separations generally infilled with
clay, quartz, and calcite; occasional
green tuffaceous sandy beds, 5 to 10
mm thick; occasional slickensided
joint surfaces with microfaulting. (
ARGMLITE INTERBEDDED
WITH SANDY ARGILITTE,
greenish-gray to gray, mottled, med
hard, slightly weathered; bedding v
thin to laminar, 40 to 60 deg.; joint
moderately closely spaced, 50 to 75
deg.; joints, veins, and bedding plane
separations generally infilled with
clay, quartz, and calcite; occasional
green tuffaceous sandy beds, 5 to 10
mm thick; occasional slickensided
joint surfaces with microfaulting.

$\left|\begin{array}{c}\text { Depth } \\ (\mathrm{ft.})\end{array}\right|$

## BORING SUMMARY LOG

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: N: 482330.10ft. E: 746407.38ft.

- DESC WITH SANDY ARGILLITE, purplish gray, medium hard, slightly weathered; bedding very thin to laminar 10 to 50 deg. joints very closely spaced, 45 to 90 deg.; most joints, veins, fractures infilled with clay, quarte and calcite.
168.4-178.4 ft.: Green and white tuffaceous sandstone beds, 3 to 35 mm wide.
188.4 ft .: Correction in depth of borehole, subtracted 0.4 ft .
209.1-216.7 ft.: 25 to 35 deg. bedding plane separations infilled with quartz and chlorite, 2 to 10 mm wide.
213.0-222.2 ft.: Closely spaced 65 to 75 deg. joints, generally clean or infilled with quarte.
217.5-237.5 ft.: Oriented core.
microfaulting
$142.0 \mathrm{ft} .:$
55 deg. joint 143.4 ft .: 70 deg .
cleavage.
143.7-144.0 ft.: Green and white tuffaceous sandstone beds.
148.0 ft .: 70 deg. joint
148.0-148.3 ft.:

Fracture zone.
148.9-149.7 ft.: Holes 1
mm wide in core.
152.1 ft : 30 deg .
quartz-filled joint, 15 to
20 mm wide.
$152.3 \mathrm{ft} .: 60 \mathrm{deg}$.
quartz-filled joint, 15 to
20 mm wide.
155.5-156.5 ft.: Green
and white tuffaceous
sandstone beds.
157.0-157.3 ft.: Green and white tuffaceous and white tufas.
sandstone beds.
$163.2 \mathrm{ft} .: 15 \mathrm{deg}$
$163.2 \mathrm{ft} .: 15$ deg.
calcite-filled bedding
plane separation.
164.8-168.3 ft.: Green
and white tuffaceous
sandstone beds, 5 to 10
mm wide.
170.8 ft : Fracture zone. 173.0 ft :: 30 deg
slickensided joint
175.0 ft .: 30 deg. joint, rough surfaces.
175.8-176.3 ft.:

Brecciated zone with quartz infilling.
178.0 ft .: 75 deg . joint
179.8-180.4 ft.:

Fracture zone.
181.7 ft.: Microfaulting
offsets bedding 3 to 6 mm.
$184.1 \mathrm{ft} .:$ Microfaulting offsets bedding by 3 to 6 mm
185.1 ft.: Microfaulting offsets bedding by 3 to 6 mm.
188.6 ft .: Fracture zone, healed fractures.
189.1 ft : Vein of
calcite and quartz, 10 to 30 mm wide.
194.0 ft .: 90 deg. joint. 196.0-197.2 ft.: Fractures infilled with quartz.
198.0 ft .: 15 deg
quartz-filled joint, 7 mm wide.
198.0-198.6 ft.: Quartz veins 6 to 25 mm wide. 201.0-202.0 ft.:

Fracture zone.
203.2 ft . 30 deg 203.2 ft-: 30 deg. 20 mm wide. 207.6 ft .: 30 deg quartz-filled joint, 6 to 10 mm wide
207.8 ft .: 30 deg quartz-filled joint, 7 mm

to
16

Sea Floor Elevation: 88.5 ft . Total Depth Drilled: 318.1 ft .
T

- | Depth |
| :---: |
| $(\mathrm{ft})$. |

| $\substack{\text { Elev } \\ \text { (ft. }}$ |
| :---: | :---: |

150

REC


| Point | Pr <br> Te <br> Le <br> Load <br> $\mathrm{I}_{\mathbf{s}} \mathbf{5 0}$ |
| :--- | :--- |

460

| 1460 |  |
| :--- | :--- |

itored double pack

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority
Coordinates: $\mathbf{N}: 482330.10 f t$. E: 746407.38ft.
271.6-276.3 ft.: Moderately closely spaced 70 and 80 deg. joints, 2 to 3 mm thick, infilled with quarte and chlorite.
290.1 ft .: Some pyrite.
290.5-296.0 ft.: Fracture zone with very closely spaced joints.

| DESCRIPT |
| :--- |
| MAIN |
|  |
| TUFFACEOUS SANDY |
| ARGLILITE, dark green to light |
| green, medium hard to hard, slightly |
| weathered; flow banded appearance, |
| thin to very thinly spaced bands, |
| generally 10 to 35 deg.j joints |
| moderately closely spaced, 45 to 80 |
| deg. 1 to 10 mm wide, generally |


| DESCR |
| :--- |
| MAIN |
|  |
| TUFFACEOUS SANDY |
| ARGLLLITE, dark green to light |
| green, medium hard to hard, slig |
| weathered; flow banded appeara |
| thin to very thinly spaced bands |
| generally 10 to 35 deg.; joints |
| moderately closely spaced, 45 to |
| deg., 1 to 10 mm wide, generally |
| infilled with quartz and chlorite. |
|  |
| 238.9-240.0 ft.: Preserved core. |
| 241.2-242.5 ft.: Preserved core. |


| DESCR |
| :--- |
| MAIN |
|  |
| TUFFACEOUS SANDY |
| ARGLLLITE, dark green to light |
| green, medium hard to hard, slig |
| weathered; flow banded appeara |
| thin to very thinly spaced bands |
| generally 10 to 35 deg.; joints |
| moderately closely spaced, 45 to |
| deg., 1 to 10 mm wide, generally |
| infilled with quartz and chlorite. |
|  |
| 238.9-240.0 ft.: Preserved core. |
| 241.2-242.5 ft.: Preserved core. |

247.5-267.5 ft.: Oriented core.

Sea Floor Elevation: $\mathbf{8 8 . 5} \mathbf{f t}$. Total Depth Drilled: 318.1 ft .


NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: N: 482330.10ft. E: 746407.38ft.

| DESCRIPTION |  | $\begin{gathered} D_{\text {epth }} \\ (\mathrm{ft} .) \end{gathered}$ | Elev. <br> (ft.) | REC | RQD | Point Load $\mathrm{I}_{\mathrm{s} 50}$ | $\begin{aligned} & \text { Pressure } \\ & \text { Test } \\ & \mathbf{K}=\mathrm{cm} / \mathrm{sec} \\ & (\mathbf{x} \overline{\mathbf{0}} \mathbf{0 . 0 0 0 1 )} \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MAIN | DETAIL |  |  |  |  |  |  |
| TUFPACEOUS SANDY <br> ARGILLITE, dark green to light green, medium hard to hard, slightly weathered; flow banded appearance, thin to very thinly spaced bands, generally 10 to 35 deg.; joints moderately close to closely spaced 45 to 80 deg. 1 to 10 mm wide, generally infilled with quartz and chlorite. Numerous drilling breaks parallel to joints and flow banding. | 301.3-301.8 ft.: <br> Fracture zone, 65-70 deg. quartz-filled joints. 302.0 ft :: Pyrite mineralization. <br> 303.0 ft .: 70 deg . joint. <br> 304.0 ft .: 50 deg. joint. <br> 310.0 ft .: 80 deg. quartz and chlorite-filled joint. <br> 311.0 ft .: 30 deg. joint. <br> 314.7 ft.: Brecciated <br> joint 5 mm wide. <br> 316.5-318.1 ft.; <br> Fracture zone with very |  | 215 <br> 220 <br> 225 |  |  | $\begin{array}{r} 810 \\ <200 \\ 1063 \\ 714 \end{array}$ |  |
| 318.1 FT.: END OF BORING | closely spaced quartz filled joints, dipping 30 to 60 deg . |  |  |  |  |  |  |

NOTES: Packer Test, transducer monitored double packer, K=10-5 cm/sec at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial.

FIELD TEST BORING RECORD COVER SHEET


## SUMMARY

SOIL DRILLED 115.0 (FT) ROCK CORED 192.5 (FT)
NUMBER SPLIT BARREL SAMPLES
12

## NOTES

1. The coordinate system used is the 1927 MASS GRID.
2. Datum is M.D.C.
3. In water borings, the split spoon sampler was driven into the soil by dropping a 175-pound sliding down hole hammer a distance of 4 feet within the borehole.
4. In land based borings the soil sampling method used was the STD Penetration Resistance using a 140 lb . hammer dropping a distance of 30 inches.


PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{4 8 0 6 4 2 . 7 9 f t}$. E: $\mathbf{7 4 6 3 0 6 . 7 6 f t}$.


NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority
Coordinates: N: 480642.79ft. E: 746306.76ft.


NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{4 8 0 6 4 2 . 7 9 f t}$ E: $\mathbf{7 4 6 3 0 6} .76 \mathrm{ft}$.

| DESCRIPTIO |  |
| :--- | :---: |
| MAIN |  |
|  |  |

187.5-197.5 ft.: Joints are moderately closely spaced, generally 2 to 3 mm wide, and crosscutting bedding.

$\left.-$| Depth |
| :---: |
| (ft.) | \right\rvert\,

207.3-227.3 ft.: Oriented core.

TUFFACEOUS SANDY
ARGILLITE, greenish gray, hard, slightly weathered to fresh; bedding very thin to laminar 30 to 40 deg.; joint spacing generally moderately closely, 50 to 75 deg.; slickensides present on many joint and bedding plane surfaces.
207.5-217.5 ft.: Moderately closely spaced joints.

Sea Floor Elevation: 84.3 ft . Total Depth Drilled: 307.5 ft .
160.5-161.5 ft.: Slumped bedding. 160.5: 60 deg. slickensided joint.
164.5-165.4 ft.:

Fracture zone, highly weathered, closely spaced 80 deg. quartz veins and bedding plane separations.
177.5-178.5 ft.:

Fracture zone with abundant quartz veins, brecciation, and pyrite. 179.0 ft :: Pyrite mineralization. 180.0 ft .: 75 deg. joint with slickensides, crosscutting bedding. 181.0 ft .: Pink quartz-rich sandstone bed.
183.0 ft .: Two 60 deg .
joints.
183.5 ft .: Soft sediment deformation. 190.5 ft :: 70 deg . slickensided joint. 194.5 ft .: 70 deg. calcite filled joint. 195.0 ft .: 70 deg . calcite filled joint. 195.0-196.0 ft.: Numerous 90 deg. calcite veins.
197.0-197.8 ft.:

Fracture zone. 200.2-201.0 ft: Pitted with a network of calcite stringers and pyrite mineralization. 207.0 ft :: 80 deg. slickensided joint.
212.5-214.5 ft.:

Numerous thin
interbedded quartz rich sandstone beds.
224.0 ft .: Pyrite

Fracture zone. $147.7-149.0 \mathrm{ft} .: 70 \mathrm{deg}$. quartz filled joint.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: N: 480642.79ft. E: 746306.76ft.

Sea Floor Elevation: $\mathbf{8 4 . 3} \mathbf{f t}$. Total Depth Drilled: 307.5 ft.
237.3-257.3 ft.: Oriented core.
237.5-247.5 ft.: Very widely spaced joints.
247.5-257.5 ft.: Widely spaced joints.

DIABASE, dark green, very hard,
fresh; massive; joints closely spaced, 30 to 80 deg.; veins infilled with quartz and calcite; disseminated pyrite present throughout.
287.5-292.5: Quartz veins, 1 to 7 mm wide, various orientations.

| DESCRIPTI |
| :--- |
| MAIN |
|  |
| TUFPACEOUS SANDY |
| ARGILITE, greenish gray, hard, |
| slightly.weathered to fresh; bedding |
| very thin to laminar 30 to 40 deg.; |
| joint spacing generally moderately |
| closely, 50 to 75 deg.; slickensides |
| present on many joint and bedding |
| plane surfaces. |
| $231.0-232.2$ ft.: Preserved core. |
|  |
| $237.3-257.3 \mathrm{ft.:} \mathrm{Oriented} \mathrm{core}$. |
| $237.5-247.5 \mathrm{ft} .:$ Very widely spaced |
| joints. |

243.0-244.0 ft.:

Slumped bedding.
249.2-252.2 ft.: Massive fabric.
252.8-258.3 ft.: 45 deg. bedding.
264.7 ft : 60 deg.
slickensided joint.
265.3-265.5 ft.: 60 deg . calcite filled joint, 50 mm wide.
278.0 ft :: 60 deg. slickensided joint 279.3 ft :: 40 deg . slickensided joint. 280.5 ft .: 80 deg. slickensided joint.
287.2 ft .: 50 deg. slickensided joint. 288.0 ft :: 80 deg. slickensided joint. 289.0 ft .: 70 deg . slickensided joint.
294.0 ft .: 85 deg . slickensided joint.

## BORING SUMMARY LOG

 BORING 89-105PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{4 8 0 6 4 2 . 7 9 f t}$. E: $\mathbf{7 4 6 3 0 6 . 7 6 f t}$.


NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

FIELD TEST BORING RECORD COVER SHEET


PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority
Coordinates: $\mathrm{N}: \mathbf{4 7 8 9 3 4 . 7 7 f t}$ E: 746371.33ft.

| MESCRIPTION |
| :---: |
| MAIN |
| SII,TY SAND, fine to medium sand, |
| $35 \%$ silt, $5 \%$ clay, very loose, gray and |
| black (SM), abundant shell fragments. |

TILL, CLAYEY SILT, $35 \%$ fine to coarse gravel, angular clasts, $5 \%$ medium sand, very dense, olive gray (ML).

TILL, SANDY GRAVEL, mostly
fine to coarse gravel, angular clasts, $35 \%$ medium to coarse sand, $25 \%$ clayey silt, very dense, olive gray (GP).

TILL, CLAYEY SILT, $40 \%$ medium to coarse sand, $5 \%$ fine gravel, very dense, olive gray (ML).

## ARGHLITE INTERBEDDED

WITH SANDSTONE, black to light gray, medium hard to hard, slightly weathered to fresh; bedding very thin to laminar 30 to 45 deg., except generally massive in sandy light gray areas; joints moderately closely spaced, 45 to 80 deg.; soft sediment deformation (slumped bedding) common throughout; joints, veins, and bedding plane partings generally infilled with calcite, quartz, and clay.
55.0-58.0 ft.: Altered Diabase, light grayish green, medium hard.

TOP OF BEDROCK 32.5 FT.

Roller bit to 37.5 ft . 37.5-39.3 ft.: Slumped bedding.
38.0 ft .:
38.0 ft .: 80 degree cleavage.
41.0 ft .: Tuffaceous argillite.
42.0-51.3 ft.: Slumped bedding.
47.0 ft : 70 deg
cleavage.
49.0-51.5 ft.: Network of calcite veining.
52.8 ft .: 60 deg. clay filled joint.
60.5 ft : 70 deg .
cleavage.
63.0 ft : 90 deg. calcite vein.
64.9-65.4 ft.: Slumped bedding.
66.0 ft .: 45 deg. clay filled joint.
66.3 ft .: 70 deg .
slickensided calcite vein 68.3-70.3 ft.:

Sandstone; slumped bedding with Argillite clasts.

Sea Floor Elevation: 72.5 ft. Total Depth Drilled: 292.0 ft.

## BORING SUMMARY LOG

BORING 89-106

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: N: 478934.77ft. E: 746371.33ft.

| DESCRIPTION |  | $\begin{gathered} \text { Depth } \\ (\mathrm{ft.}) \end{gathered}$ | Elev. <br> (ft.) | REC | RQD | Point <br> Load <br> $\mathrm{I}_{\mathrm{s} 50}$ | PressureTest$\mathrm{K}=\mathrm{cm} / \mathrm{sec}$$(\mathbf{x} \mathbf{0} .0001)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MAIN | DETAIL |  |  |  |  |  |  |
| ARGILLITE INTERBEDDED WITH SANDSTONE, black to light gray, medium hard, fresh to slightly weathered; bedding very thin to laminar except generally massive in sandy light gray areas, 25 to 35 deg.; joints moderately close to widely spaced, generally 60 deg.; joints, veins and bedding plane separations generally infilled with calcite or clay. <br> 82.0-89.7 ft.: Felspathic Sandstone, light grayish green, medium hard, massive. | 71.5-71.8 ft.: Coarse Sandstone bed. 77.0 ft .: 80 deg . cleavage 77.0-78.0 ft.: Massive Sandstone beds contain Argillite clasts. $78.8-80.0 \mathrm{ft} .: 75 \mathrm{deg}$. calcite veins up to 10 mm thick. <br> 82.0 ft .: 60 deg . calcite filled joint, crosscutting bedding. <br> 83.0 ft .: 60 deg. calcite filled joint, crosscutting bedding. <br> 89.7-92.0 ft.: 70-90 deg. calcite filled joints, crosscutting bedding <br> 97.0 ft .: Pyrite mineralization. <br> 99.8-100.0 ft. \& 105.2-106.4 ft.: <br> Sandstone with argillite clasts. <br> 102.0-112.0 ft.: Widely spaced joints. 103.0 ft .: 50 deg . calcite filled joint crosscutting bedding. 104.5-107.0 ft.: Massive sandstone with argillite clasts. <br> 105.2-106.4 ft.: <br> Sandstone with argillite clasts. <br> 114.0-117.0 ft.: <br> Slumped bedding. <br> 115.8 ft : 80 deg. <br> cleavage <br> 117.0-118.6 ft.: <br> Sandstone with argillite clasts. <br> 120.7-122.0 ft.: <br> Slumped Sandstone <br> bedding with argillite clasts. <br> 123.0-131.4 ft.: <br> Slumped bedding. <br> 126.8-127.0 ft.: Coarse <br> Sandstone bed. <br> 129.8 ft .: 80 deg . <br> cleavage. <br> 135.0 ft .: 80 deg. pyrite and calcite coated joint. 137.0 ft : 60 deg. joint, crosscutting bedding. 138.1 ft .: 60 deg. joint, crosscutting bedding. <br> 143.0 ft .: Calcite filled bedding plane partings, 1 to 7 mm thick. 146.0 ft .: Calcite filled bedding plane partings 1 to 7 mm thick. <br> 148.5 ft .: 60 deg. joint, |  |  |  |  | $\begin{array}{r} \\ \hline 200 \\ 1359 \\ \hline 795 \\ 1272 \\ \hline 1097 \\ \hline 1542 \\ \hline 1065 \\ \hline 2007 \\ \hline 200 \\ \hline 150\end{array}$ |  |

NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}, \mathbf{1 0 - 5} \mathrm{cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 50 mm standard, diametric except ${ }^{*}$ indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer, Recovery in inches.

## BORING SUMMARY LOG

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: N: 478934.77ft. E: 746371.33ft.

Sea Floor Elevation: $\mathbf{7 2 . 5} \mathbf{f t}$. Total Depth Drilled: 292.0 ft.
( DESCR WITH SANDSTONE, black to light gray, medium hard, fresh to slightly weathered; bedding thin to laminar except generally massive in sandy light gray areas, 25 to 35 deg.; joints moderately close to widely spaced generally 60 deg.; joints, veins and bedding plane separations generally infilled with calcite or clay.
162.0-182.0 ft.: Core is more massive. 162.4-168.8 ft.: Many sandstone beds with argillite clasts.
182.0-192.0 ft.: Widely spaced joints with many bedding plane separations.
187.0-190.5 ft.: Sandstone beds with argillite clasts.
192.5-217.5 ft.: Oriented core.
202.0-217.0 ft.: Few bedding plane separations.
209.5-227.0 ft.: No natural joints.
222.5-223.8 ft.: Preserved core.
156.0-162.0 ft.: Slumped bedding with calcite filled fractures. 157.7-158.8 ft.: Brecciated zone with numerous ennechelon joints 158.5 ft .: 70 deg joint, crosscutting bedding. $161.0 \mathrm{ft} .: 70$ deg. joint, crosscutting bedding.
169.5-170.3 ft.: Closely spaced joints, 1 to 3 mm wide, approximately 65 deg. 173.0 ft .: 50 dep joint, crosscutting bedding. 176.0 ft .: 50 deg. joint, crosscutting bedding. $178.0 \mathrm{ft} .: 80 \mathrm{deg}$. joint, crosscutting bedding. 179.0-180.0 ft.: Slumped bedding. 179.5-181.4 ft.: Closely spaced calcite filled joints, 70 to 80 deg . 180.6 ft : 60 deg . joint, crosscutting bedding. 182.5 ft .: 70 deg. joint, crosscutting bedding. 183.5 ft .: 75 deg. joint with slickensides. 184.3 ft .: 60 deg. joint, crosscutting bedding. 186.0 ft.: 60 deg. joint, crosscutting bedding. 193.4 ft .: 60 deg. 193.4 tt . 60 deg.
calcite filled joint crosscutting bedding. 193.5 ft .: 60 deg. calcite filled joint crosscutting bedding. crosscutting ft : 199.5-201.5 ft.:
Numerous bedding plane separations.
$200.5-202.0 \mathrm{ft}$.
Fracture zone with 80 deg. cleavage. deg. cleavage.
203.7 ft : 4 mm thick bedding plane parting infilled with calcite. 207.0 ft .: 80 deg. calcite filled joint crosscutting bedding. 207.5 ft .: 60 deg. calcite filled joint crosscutting bedding. 212.5-214. 8 ft .: Slumped bedding. 214.8-215.0 ft.: 50 deg vein, 20 mm wide infilled with calcite and brecciated argillite. 215.0-217.0 ft.: Slumped beddin 218.0-219.8 ft.:
$-\underset{\substack{\text { Depth } \\ \text { (ft.) }}}{\substack{\text { and }}}$

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: N: $\mathbf{4 7 8 9 3 4 . 7 7 f t}$. E: 746371.33ft.


NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}, \mathbf{1 0 - 5} \mathrm{cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 50 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer, Recovery in inches.

## FIELD TEST BORING RECORD COVER SHEET



## BORING <br> SUMMARY LOG

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority
Coordinates: N: 476641.05ft. E: 746227.69ft.


Sea Floor Elevation: $\mathbf{8 5 . 6} \mathbf{f t}$. Total Depth Drilled: 303.7 ft .


PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority
Coordinates: $\mathrm{N}: \mathbf{4 7 6 6 4 1 . 0 5 f t}$. E: 746227.69ft.

SANDSTONE BEDS, gray, medium hard, slightly weathered; bedding very thin to laminar, 0 to 35 deg.; sandy beds are generally calcareous, joints moderately closely spaced, 60 to 85 deg.; occasional calcite veins, various dip ängles; calcite throughout core.

## ARGILLITE WITH OCCASIONAL

 SANDSTONE BEDS, dark gray, medium hard, slightly weathered; bedding very thin to laminar, 10 to 45 deg.; joints moderately close to very closely spaced, 50 to 70 deg.; occasional veins at various angles; veins, joints and bedding plane separations generally infilled with separations generaly inft.calcite and minor quartz.

DIABASE, grayish green, hard, massive, numerous calcite veins. 4 cm wide calcite veins at contact of felsite and argillite.
137.0-147.0 ft.: Slumped bedding common:

NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 50 mm standard, diametric except *indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority
Coordinates: N: 476641.05ft. E: 746227.69ft.

| DESCRIP |
| :---: |
| MAIN |
| ARGILLITE WITH OCCASIONAL |

SANDSTONE BEDS, dark gray
medium hard, slightly weathered;
bedding very thin to laminar, 10 to 45
deg.; joints moderately close to very closely spaced, 50 to 70 deg.;
occasional veins at various angles;
veins, joints and bedding plane
separations generally infilled with
calcite and minor quartz.
151.5 ft .: 60 deg. clay 151.5 ft.: 60 deg. clay
filled joint, crosscutting bedding.
152.0 ft .: 5 mm wide bedding plane separation infilled with calcite and argillite breccia.
158.3-159.6 ft.:

Slumped bedding.

$\left.-$| Depth |
| :---: |
| (ft.) | \right\rvert\,


| $\substack{\text { Dep } \\ (f t \\ \hline}$ |
| :---: | :---: |
| 150 |

162.5 ft .: 50 deg. slickensided joint.
171.2-171.8 ft.:

Calcareous sandy beds.
174.0-177.0 ft.:

Slumped bedding with argillite clasts. 175.0 ft .: 90 deg. fault, recemented with calcite.
ARGLLLITE WITH OCCASIONAL SANDSTONE BEDS, dark gray to black, medium hard, slightly weathered; bedding very thin to laminar, 10 to 35 deg.; joints moderately close to closely spaced, 50 to 80 deg.; occasional calcite veins 40 to 80 deg .
193.0-197.0 ft.: 70 deg. joints, 2 to 4 mm wide crosscutting bedding, calcite infilling.
206.6-226.6 ft.: Oriented core.
181.0-181.2 ft.: Gouge zone.
187.0-189.0 ft.: Calcite veins, various orientations. 190.0-190.8 ft.: Soft argillite.
190.9-191.1 ft.:

Sandstone bed.
192.0-194.0 ft.: Calcite veins, various orientations.
197.7-198.5 ft.: 60 deg . fracture zone with numerous voids and slickensides.
slickensides.
Fracture zone,
recemented with calcite.
201.0-203.2 ft.:

Slumped bedding with calcite clasts.
205.6-206.8 ft.:

Sea Floor Elevation: 85.6 ft . Total Depth Drilled: $\mathbf{3 0 3 . 7} \mathbf{f t}$.

Slumped bedding with calcite clasts.
206.4 ft .: Closely spaced 60 to 70 deg. joints.
210.0-210.5 ft.:

Brecciated zone.
211.0 ft :: 45 deg
slickensided bedding
plane separation.
213.8-214.9 ft.:

Slumped bedding with
calcite clasts.
215.9-216.6 ft.:

Brecciated zone.
220.8-221.5 ft.:

Slumped bedding.

GOLDBERG-ZOINO \& ASSOCIATES, INC.

## BORING SUMMARY LOG

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: N: 476641.05ft. E: 746227.69ft.


NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 50 mm standard, diametric except ${ }^{*}$ indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority
Coordinates: $\mathrm{N}: \mathbf{4 7 6 6 4 1 . 0 5 f t}$. E: $\mathbf{7 4 6 2 2 7 . 6 9 f t}$.


NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test
corrected to 50 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

FIELD TEST BORING RECORD COVER SHEET


## NOTES

1. The coordinate system used is the 1927 MASS GRID.
2. Datum is M.D.C.
3. In water borings, the split spoon sampler was driven into the soil by dropping a 175-pound sliding down hole hammer a distance of 4 feet within the borehole.
4. In land based borings the soil sampling method used was the STD Penetration Resistance using a 140 lb . hammer dropping a distance of 30 inches.

| APPROVED | DATE |
| :--- | :---: |
| PYYelberp | $1 / 2 / 80$ |

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority
Coordinates: $\mathrm{N}: \mathbf{4 7 4 6 5 1 . 3 3 f t}$. E: 746305.36ft.


NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{4 7 4 6 5 1 . 3 3 f t}$. E: $\mathbf{7 4 6 3 0 5} .36 \mathrm{ft}$.

ARGILIITE gray to black, medium hard, fresh to slightly weathered; bedding very thin to laminar, 10 to 30 deg., medium close bedding plane separations; joints moderately close to closely spaced, 55 to 85 deg; abundant pyrite.
146.0-152.0 ft.: Numerous bedding plane separations infilled with calcite.

Sea Floor Elevation: 91.4 ft . Total Depth Drilled: $\mathbf{3 0 0 . 2} \mathbf{f t}$.
88.5-96.0 ft.: Fault zone, roller bit,
cuttings are clay cuttings are clay and gravel, no core recovered.

ARGLLITE gray to black, medium hard, fresh to slightly weathered; bedding very thin to laminar, 10 to 30 deg. from 99.7 to 124 feet and 50 to 65 deg. from 124 to 138 feet, medium close bedding plane separations; joints moderately close to closely spaced, 55 to 85 deg; abundant pyrite. recovered.

| DESCRIPT |
| :--- |
| DIABASE, yellowish green to gray |
| with very light gray areas, medium |
| hard, slightly weathered; joints |
| closely to moderately closely spaced, |
| 10 to 85 deg.; occasional chlorite, |
| quartz and calcite veins; pyrite |
| present throughout, many joint |
| surfaces are slickensided. |
|  |
|  |
| 88.5-96.0 ft.: Fault zone, roller bit, |
| cuttings are clay and gravel, no core |
| recovered. |

75.5-78.6 ft.: Fracture zone adjacent to 50 deg. quartz vein, 1 cm wide. $76.0 \mathrm{ft} .:$ Fracture zone with iron stained surfaces.
79.0-80.0 ft.: 90 deg . quartz vein, 1.5 mm wide.
wide
$81.5-82.5 \mathrm{ft}$.: 90 deg .
basaltic dike 13 mm . wide.
$82.0 \mathrm{ft} .: 75$ deg. joint.
82.5-88.5 ft.: 13 mm wide quartz vein; also quartz filled vugs. 82.5-83.2 ft.: Fracture zone adjacent to 55 deg. quartz vein.
84.9-85.4 ft.: Fracture zone with quartz filling. 87.0-88.0 ft.: Pyrite $87.0-88.0 \mathrm{ft} .: ~$
mineralization.
mineralization.
88.0 ft.: 55 deg. fault. $97.2 \mathrm{ft} .: 80$ deg. joint. 100.0-103.0 ft.:

Fracture zone sheared and slickensided
adjacent to 80 deg.
fracture.
100.0 ft .: 90 deg. quartz vein, 2 cm wide.
101.0 ft .: 85 deg . joint, rough surfaces.
101.0-103.0 ft.:

Fracture zone.
103.4 ft : P Pyrite
mineralization.
106.8 ft :: Pyrite
mineralization.
109.0 ft .: 80 deg. joint.
109.5-109.8 ft.: Clay
and gouge zone along 20
deg. bedding plane
separations.
114.0 ft .: 70 deg. joint, crosscutting bedding.
118.9 ft.: Fracture zone adjacent to 40 deg.
joint.
120.0 ft .: 75 deg . joint, crosscutting bedding. 123.9 ft .: Pyrite mineralization.
136.0 ft .: Bedding plane separations infilled with calcite.
143.0 ft : 75 deg. clay filled joint.
$\qquad$
$\underset{\substack{\text { Depth } \\ \text { (ft.) }}}{ }$

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority
Coordinates: N: 474651.33ft. E: 746305.36ft.


NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ** $=$ SOIL, Down Hole Hammer/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority
Coordinates: N: 474651.33ft. E: 746305.36ft.


NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

GOLDBERG-ZOINO \& ASSOCIATES, INC.
BORING SUMMARY LOG

BORING 89-108
6

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority
Coordinates: $\mathrm{N}: \mathbf{4 7 4 6 5 1 . 3 3 f t}$ E: $\mathbf{7 4 6 3 0 5} .36 \mathrm{ft}$.


NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test
corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

FIELD TEST BORING RECORD COVER SHEET


GOLDBERG-ZOINO \& ASSOCIATES, INC. BORING SUMMARY LOG

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: N: 472679.22ft. E: 746274.62 ft .


NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=\mathbf{1 0 - 5} \mathrm{cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority
Coordinates: N: 472679.22ft. E: 746274.62ft.

| DESCR |
| :--- |
| MAIN |
|  |
| TILL, GRAVEL, fine to coarse, |
| very dense (GP). |

TILL, GRAVELLY CLAY, mostly silty clay, $40 \%$ fine to coarse gravel, $5 \%$ fine to coarse sand, very dense, greenish gray (CL).

TILL, GRAVELLY CLAY, mostly silty clay, $40 \%$ fine to coarse gravel, $5 \%$ fine sand, very dense, greenish gray (CL).

## ARGILIITE WITH OCCASIONAL

 SANDY ARGILLITE, purplish gray, medium hard, slightly weathered; bedding difficult to see; some healed fractures with many fractures having offsets of up to 10 mm in length; moderately close to closely spaced joints generally 60 to 90 deg.; many joints and fractures are infilled with calcite and clay; some quartz and calcite veins.130.5-132.0 ft.: Bedding plane separations coated with kaolinite.

TOP OF BEDROCK 108.0 F'T.

Roller bit to 116.0 ft .
120.0-123.0 ft.:

Fracture zone, some clay and kaolinite. 120.0 ft .: 45 deg. cleavage.
128.2-128.6 ft.:

Fracture zone.
129.6 ft .: Clay zone. 131.0 ft .: 35 deg . cleavage.
135.0-136.0 ft.: 80 deg. calcite vein. 136.5 ft .: Clay zone. 137.5-140.7 ft.:

Fracture zone and 10 to 15 mm wide veins of quartz, calcite, and kaolinite.
144.0-145.5 ft.:

Fracture zone.
146.5-147.5 ft.:

Fracture zone.
148.4-149.3 ft.:

Sea Floor Elevation: 89.0 ft . Total Depth Drilled: $\mathbf{3 0 5 . 5} \mathbf{f t}$.


NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.
GOLDBERG-ZOINO \& ASSOCIATES, INC. BORING
SUMMARY LOG

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: N: 472679.22ft. E: 746274.62ft.


Sea Floor Elevation: 89.0 ft . Total Depth Drilled: 305.5 ft .

DESCRIPTION
183.3-187.5 ft.: Very fractured, gouge zone, poor recovery.
198.0-218.5 ft.: Oriented core.

ARGHLITE WITH OCCASIONAL SAND Y ARGILLITE, purple to alightly weathered. bedding very thin to laminar, 25 to 60 deg.; closely spaced joints, 35 to 80 deg.; veins and joints are generally infilled with quartz, chlorite, clay and kaolinite.
218.5-220.1 ft.: Preserved core.
222.8-223.5 ft.: Preserved core.
192.0-197.5 ft.: Soft rock.

ARGHLITE WITH OCCA SANDY ARGILITYE, purplish gray medium hard, slightly to highly weathered; weakly bedded to massive; generally fractured with many and calcite veins; close to very closely spaced joints generally 40 to 70 deg., some joints 25 to 30 deg. and 90 deg.

NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{4 7 2 6 7 9 . 2 2 f t}$. E: $\mathbf{7 4 6 2 7 4 . 6 2 f t}$.
263.5-265.3 ft.: Purple argillite with dark purple beds (white in center) 5 to 15 mm thick.


Sea Floor Elevation: 89.0 ft .
Total Depth Drilled: 305.5 ft .
filled joint.
$223.0 \mathrm{ft}:$ : 50 deg. quartz
filled joint.
225.0-226.0 ft.:

Brecciated argillite in clay matrix.
226.0-228.5 ft.: No recovery.
recovery.
231.0 ft.: 40 deg. joint filled with quarte and minor calcite.
231.5 ft : 80 deg . joint
231.5 ft: 80 deg. joint
filled with quartz and minor calcite.
232.5 ft .: 75 deg. joint filled with quartz and minor calcite.
234.9-237.0 ft.: Red
$234.9-237.0 \mathrm{ft}_{1}:$ Red
felsite beds 1 to 2 mm felsite
${ }_{235.0}$ wt.: 85 deg . joint.
236.0 ft .: 50 deg. joint. 237.3 ft : 85 deg. joint. 240.0 ft .: 40 deg. quartz-filled joint. 240.5 ft .: 65 deg . quartz-filled joint. 241.2 ft . 40 deg . quartz-filled joint. 243.0 ft .: 80 deg . quartz-filled joint. 244.5 ft .: 70 deg . quartz-filled joint. 245.0 ft .: 70 deg. quartz-filled joint. 250.0 ft .: 60 deg . slickensided joint. 252.0 ft .: 65 deg. slickensided joint. 253.0 ft : 50 deg . slickensided joint. 254.8 ft :: 80 deg . slickensided joint. 255.5 ft .: 75 deg. quartz-filled joint. 256.5 ft : 70 deg. quartz-filled joint. 259.7 ft :- 70 deg. quartz-filled joint. 265.3-283.5 ft.: Light green, dark green and white (chlorite) beds ( 1 to 7 mm thick) parallel to bedding.
266.0 ft :: 80 deg . slickensided joint. 267.3 ft.: 60 deg. slickensided joint. 268.0 ft .: 60 deg . cleavage.
268.9 ft .: 55 deg. slickensided joint. 270.0 ft :: 65 deg . slickensided joint. $270.1-270.3 \mathrm{ft} . \mathrm{C}$ Quartz and feldspar-rich layer parallel to bedding. 272.5 ft .: 70 deg . slickensided joint. 275.0 ft .: 65 deg . slickensided joint. 276.5 ft .: 65 deg. slickensided joint. 277.0 ft :: 60 deg . slickensided joint.

NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority
Coordinates: N: 472679.22ft. E: 746274.62ft.


NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test
corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

FIELD TEST BORING RECORD COVER SHEET


PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{4 7 0 7 5 9 . 2 0 f t}$ E: 746341.59 ft .


NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{4 7 0 7 5 9 . 2 0 f t}$. E: 746341.59ft.

101.9-107.8 ft.: Several thin horizons of altered (chlorite) Argillite with 60 to 80 deg. cleavage.
111.0 ft .: Shoe of core barrel plugged up due to weak circulation.
118.0-148.0 ft.: Numerous 15 to 20 deg. bedding plane separations. 118.0 ft .: Core barrel blocked.
138.0-148.0 ft.: Core HQ8 was bumped and badly disturbed before logging.
138.0-168.0 ft.: Green chlorite beds ( 4 to 6 mm thick) spaced
approximately 0.75 feet apart.
147.0 ft.: Core barrel blocked.

TOP OF BEDROCK 80.0 FT.

Roller bit to 89.3 ft .
89.3-89.9 ft.: Green (chlorite) altered argillite.
89.5-90.5 ft.: Very thin ( 1 mm wide) 70 deg . joints.
90.0 ft .: 80 deg .
cleavage.
cleavage. 90.6 ft.: Green
(chlorite) altered
argillite.
93.0 ft .: 75 deg. joint. 95.5 ft .: 75 deg . cleavage.
$96.0 \mathrm{ft} .: 60$ deg. joint. 99.0 ft .: 75 deg . joint. 100.0 ft .: 75 deg. joint.
108.5-108.7 ft.: Only rock fragments
recovered.
108.5 ft .: 80 deg .
cleavage.
109.9-110.8 ft.: Clay coated fractures adjacent to 80 deg . joints.
111.1-111.5 ft.: Clay zone.
112.0 ft .: Shoe of core barrel jammed. 113.3-117.4 ft.: 80 deg. fracture zone and 80 deg. cleavage with micro faulting along bedding. 118.0 ft .: Shoe of core barrel jammed.
118.0 ft .: 80 deg . clay coated joint.
118.4-118.9 ft.: Altered (chloritic) argillite. $120.6-122.9 \mathrm{ft}$ : 90 deg . clay coated joint. $122.4-123.0 \mathrm{ft}$.: 90 deg . joint.
123.0-123.5 ft.: 80 deg . fracture zone adjacent to 80 deg. clay coated joint.
124.3-125.5 ft.: Green and pink felsite beds. 128.3-128.5 ft.: Chlorite zone parallel to 20 deg . bedding.
129.0 ft : 20 deg . slickensides.
130.9 ft .: Iron stained bedding plane separation adjacent to 20 deg.

Sea Floor Elevation: 68.1 ft . Total Depth Drilled: 305.5 ft .

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority
Coordinates: $\mathrm{N}: \mathbf{4 7 0 7 5 9 . 2 0 f t}$ E: $\mathbf{7 4 6 3 4 1 . 5 9 f t}$.

| DESCRIPTION |  | $D_{\text {epth }}(\mathrm{ft.)}$ | $\underset{\text { (ftev.) }}{\substack{\text { Elev. }}}$ | REC | RQD | Point $\mathrm{I}_{\mathrm{s} 50}$ | Pressure <br> Test <br> $\mathrm{K}=\mathrm{cm} / \mathrm{s}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MAIN | DETAIL |  |  |  |  |  |  |

167.1-181.1 ft.: Oriented core.

170 ft :: Water stopped circulating. 170.0-180.0 ft.: Many green (chlorite) and white (calcite) beds, 3 to 6 mm thick.

ARGILLITE, gray and light green, med. hard, slightly weathered; bedding thin with occasional green chlorite or felsite beds, 10 to 20 deg.; joints closely spaced, 40 to 80 deg.; joints and bedding plane separations generally infilled with calcite or chlorite.
191.0-192.5 ft.: Preserved core.
194.6-195.3 ft.: Preserved core.
196.0-280.0 ft.: Oriented core.
196.0-201.5 ft.: Very closely spaced 65 to 75 deg, joints, 1 to 2 mm wide, parallel to 70 deg. cleavage.
frafturf 32.7 ft .: Severely fractured chloritized
zone.
133.8-134.0 ft.: Green
and red colored argillite.
$138.0-141.0 \mathrm{ft}$.: 90 deg .
clay coated joint.
138.0-141.9 ft.: Near vertical joint.
139.2-140.0 ft.: Bedding plane separations 3 to 6 mm thick with soft chloritic material.
142.6 ft .: Severely
weathered.
144.6 ft .: Bedding plane separations with soft chloritic material along surface.
147.0 ft .: Shoe of core barrel jammed.
148.0 ft .: 90 deg .
cleavage.
$148.5 \mathrm{ft}: 60$ deg. clay coated joint,
crosscutting bedding. 151.1 ft .: Chloritized zone, highly fractured 154.2 ft : 60 deg. clay coated joint, crosscutting bedding. 155.8 ft .: 60 deg. clay coated joint,
crosscutting bedding. 157.8 ft .: 70 deg . chlorite filled joint, closed.
159.0-159.8 ft.: Chlorite filled bedding plane separations dipping 20 deg., microfaulted with 6 mm displacement.
162.5 ft : 70 deg. chlorite filled joint, closed.
165.3 ft .: 70 deg . chlorite filled joint, closed.
166.0 ft .: 70 deg. chlorite filled joint, closed.
167.5-169.5 ft.: Green felsite beds 3 to 6 mm thick, parallel to 20 deg. bedding.
171.0 ft :: Shoe of core barrel jammed. 172.0 ft .: 60 deg. calcite filled joint. 175.0 ft .: 85 deg calcite filled joint. calcite filled joint
176.0 ft : 60 deg.
cleavage.
176.7-179.9 ft.: Bedding offset by 70 to 80 deg. joints.
178.0 ft .: 80 deg. chlorite and calcite filled joint
179.0 ft .: 70 deg . chlorite and calcite filled joint
181.0 ft .: 80 deg . calcite and chlorite

Sea Floor Elevation: 68.1 ft . Total Depth Drilled: 305.5 ft .
221.0 ft .: Core barrel plugged. $222.0 \mathrm{ft} .:$ Core barrel plugged. 223.5-233.5 ft.: Calcite veins

## BORING SUMMARY LOG

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{4 7 0 7 5 9 . 2 0 f t}$ E: 746341.59ft.


NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except ${ }^{*}$ indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority
Coordinates: $\mathrm{N}: \mathbf{4 7 0 7 5 9 . 2 0 f t}$ E: 746341.59ft.

305.5 FT.: END OF BORING

Sea Floor Elevation: 68.1 ft. Total Depth Drilled: 305.5 ft .

235che-237te foin 80 deg.
offsets 10 mm wide 15
deg. calcite vein.
236.0 ft .: 65 deg .
calcite and chlorite
filled joint
238.0 ft .: 80 deg .
cleavage.
240.0 ft .: Clay e one.
244.5 ft.: 60 deg. clay
coated joint.
247.3 ft .: 60 deg . clay
coated joint.
$248.0-248.5 \mathrm{ft}$.: 70 deg .
fracture with clay
coating.
249.6-250.0 ft.:

Reddish-purple beds, 5
to 6 mm wide.
252.2-252.5 ft.: Purple
sandy argillite.
255.0 ft . Conjugate ( 30
deg. and 70 deg.) joints.
257.8-258.7 ft.: 80 deg .
clay coated joint.
260.3-260.5 ft.:

Fracture zone, clay
coating.
260.5-261.3 ft.: No
recovery.
261.3-266.5 ft.: 70 deg .
quartz and chlorite filled
vein, 1 to 3 mm wide.
261.5 ft .: 10 deg .
slickensided bedding
plane separation.
263.5 ft .: 80 deg.
cleavage.
265.3-265. 5 ft .: 70 deg .
very closely spaced
joints filled with quartz
and chlorite.
272.6-273.0 ft.: Clay
coated 15 deg. bedding
plane separations.
273.4 ft .: 70 deg.
conjugate joints.
274.4-275.5 ft.:

Numerous voids
adjacent to 80 deg .
calcite filled joint.
276.7 ft.: Soft gray 16
mm thick, parallel to
bedding with
microfaulting, 10 mm
displacement.
278.8 ft.: 20 deg. quartz vein ( 1 mm )
microfaulted with 10 mm
displacement.
280.0 ft .: 70 deg .
slickenside joint, pyrite
mineralization.
284.6 ft .: 60 deg. joint
with brown clay on
surface, parallel to
bedding.
286.7-288.3 ft.: Very
closely spaced 80 deg.
joint.
${ }_{281.0}$ ft:: 80 deg. clay
filled joint.
291.0-295.0 ft.: 70 deg .
healed fractures.
NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test
corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

## BORING

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR Sea Floor Elevation: 68.1 ft . CLIENT: Massachusetts Water Resources Authority Total Depth Drilled: $\mathbf{3 0 5 . 5} \mathbf{f t}$.
Coordinates: N: 470759.20ft. E: 746341.59ft.


NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except ${ }^{*}$ indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

FIELD TEST BORING RECORD COVER SHEET


## NOTES

1. The coordinate system used is the 1927 MASS GRID.
2. Datum is M.D.C.
3. In water borings, the split spoon sampler was driven into the soil by dropping a 175-pound sliding down hole hammer a distance of 4 feet within the borehole.
4. In land based borings the soil sampling method used was the STD Penetration Resistance using a 140 lb. hammer dropping a distance of 30 inches.

| APPROVED | DATE |
| :--- | :--- |
| Dequather | $1 / 2 / 90$ |

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{4 7 0 5 5 3 . 5 8 f t}$. E: 747451.00ft.


NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

GOLDBERG-ZOINO \& ASSOCIATES, INC.
BORING SUMMARY LOG

BORING 89-111
SHEET 2 OF 6

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority
Coordinates: $\mathrm{N}: \mathbf{4 7 0 5 5 3 . 5 8 f t}$. E: 747451.00ft.


NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority
Coordinates: $\mathrm{N}: \mathbf{4 7 0 5 5 3} .58 \mathrm{ft}$. E: 747451.00ft.


NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority
Coordinates: N: $\mathbf{4 7 0 5 5 3 . 5 8 f t}$ E: 747451.00ft.

TUFFACEOUS ARGILLITE, gray
to green and pink, med. hard, slightly weathered; very thinly bedded, 20 to 30 deg., with small offsets; closely to very closely spaced joints filled with clay, quarte, and chlorite, 50 to 85 deg.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority
Coordinates: N: 470553.58ft. E: 747451.00ft.

Sea Floor Elevation: $\mathbf{6 8 . 5} \mathbf{f t}$. Total Depth Drilled: 395.4 ft.

hard, slightly weathered; weak thin bedding, 20 to 30 deg.; two sets of crosscutting, very closely spaced steep joints, 75 deg., filled with 2 to 6 mm
$350.2 \mathrm{ft} .: 50$ deg. joint. 350.4-351.3 ft.: Quartz vein 5 to 20 mm wide. filled joint.
352.4 ft .: 75 deg . joint. 353.5 ft .: Fault zone adjacent to tined and slickensided joint.
$354.3 \mathrm{ft} .: 65 \mathrm{deg}$. joint with clay filling.

NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except ${ }^{*}$ indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority
Coordinates: N: $\mathbf{4 7 0 5 5 3 . 5 8 f t}$. E: 747451.00ft.


NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test
corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

## FIELD TEST BORING RECORD COVER SHEET



## NOTES

1. The coordinate system used is the 1927 MASS GRID.
2. Datum is M.D.C.
3. In water borings, the split spoon sampler was driven into the soil by dropping a 175-pound sliding down hole hammer a distance of 4 feet within the borehole.
4. In land based borings the soil sampling method used was the STD Penetration Resistance using a 140 lb. hammer dropping a distance of 30 inches.


| GOLDBERG-ZOINO \& ASSOCIATES, INC. BORINGSUMMARY LOG |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR <br> CLIENT: Massachusetts Water Resources Authority Sea Floor Elevation: 74.8 ft. Coordinates: $\mathrm{N}: \mathbf{4 6 9 3 3 6 . 1 8 f t}$. E: $\mathbf{7 4 6 7 0 7 . 2 7 f t}$. |  |  |  |  |  |
|  | $)_{\text {obral }}$ |  |  | Pemo | 2mem |
|  |  |  |  | ${ }_{\text {cifin }}^{\text {cix }}$ |  |
| surx |  |  |  | ${ }^{172}$ |  |
|  |  | \% ${ }^{\circ}$ |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  | ${ }^{8,780} 8$ |  |
|  | (opoppmok |  |  |  |  |
|  |  |  |  |  |  |
| EGEaytan |  |  |  | ${ }^{\text {nr }}$ |  |
|  |  |  |  | ${ }^{\text {sin }}$ |  |
|  |  |  |  | ${ }_{\substack{\text { lut } \\ \text { lut }}}^{\text {cien }}$ |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority
Coordinates: N: 469336.18ft. E: 746707.27ft.


NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

## BORING <br> SUMMARY LOG

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority
Coordinates: N: 469336.18ft. E: 746707.27ft.

| DESCRIPT |
| :--- |
| MAIN |
|  |
| ARGILLITTE and sandy argillite |
| beds, purplish gray, hard, slightly |
| weathered, bedding thin when |
| present, 60 to 85 deg.i moderately |
| close toc closely spaced joints 40 to 60 |
| deg. joints generally stained or |
| filled with clay and quartz |

149.9-151.7 ft.:

Fracture zone.
151.0 ft .: Clay zone 20 mm thick.
153.0 ft :: 60 deg . quartz filled joint.
172.8-192.8 ft.: Oriented core. 173.0-183.0 ft.: Vertically bedded argillite with few felsite inclusions.
193.0-201.0 ft.: Interbedded argillite and thin felsite beds with crenulation cleavage.
196.0-197.0 ft.: Preserved core.
200.8-230.8 ft.: Oriented core.

ARGLLITE, purple, gray and dark gray hard to medium hard, slightly weathered; bedding medium to thin; 30 to 70 deg.; joints widely to moderately closely spaced generally 30 to 75 deg.; joints, veins, and bedding partings generally infilled with quartz, calcite, or chlorite.
221.0-241.0 ft.: Very thin (1 to 3 mm ) joints.
159.0 ft .: 60 deg. quartz
filled joint
160.0 ft: 40 deg. clay coated joint.
162.0 ft : : 20 deg. clay
coated joint.
165.0 ft .: 55 deg. quartz filled joint.
165.2 ft :: 55 deg.
slickensided felsite bed.
169.0 ft .: 40 deg. clay
coated joint.
$171.1 \mathrm{ft} .: 50$ deg. clay coated joint.
174.3 ft .: 50 deg. clay coated joint.
181.5-183.0 ft.:

Fracture zone with
slickensided vertical joint.
184.20 ft .: 40 deg.
joint.
186.5 ft .: Pink felsite bed, 10 mm thick. 187.5 ft.: Pink felsite bed, 10 mm thick.
191.9 ft : 30 deg. clay filled joint, 10 mm thick. 193.2 ft :: 60 deg. clay filled joint.
198.0 ft .: 85 deg . clay filled joint.
202.0 ft .: 20 deg. clay filled joint
203.2 ft :: 70 deg . clay filled joint.
208.6 ft : : 40 deg. joint, 2 mm wide.
211.4 ft .: Clasts of felsite 15 to 22 mm long. 212.0 ft .: 45 deg. quartz
filled joint.
$213.1 \mathrm{ft} .: 30$ deg, thin ( 1 to 3 mm ) joints parallel to 30 deg . cleavage; joints infilled with chlorite.
215.1 ft .: 45 deg .
calcite and quartz filled joint.


Sea Floor Elevation: $\mathbf{7 4 . 8} \mathbf{f t}$. Total Depth Drilled: 291.0 ft .

## $\square$

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority
Coordinates: $\mathrm{N}: \mathbf{4 6 9 3 3 6 . 1 8 f t}$. E: 746707.27ft.

| DESCRIPTION |  | Depth(ft.) | $\begin{aligned} & \text { Elev. } \\ & \text { (ft.) } \end{aligned}$ | REC | RQD | Point Load | Pressure <br> Test <br> $\mathbf{K}=\mathrm{cm} / \mathrm{sec}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MAIN | DETAIL |  |  |  |  |  |  |

ARGILLITE, purple, gray and dark gray, hard to medium hard, slightly weathered; bedding medium to thin; 30 to 70 deg.; joints widely to moderately closely spaced generally 30 to 75 deg.; joints, veins, and bedding partings generally infilled with quartz, calcite, or chlorite.
262.6-269.5 ft.: Zone of very closely spaced 40 to 45 deg. calcite filled and iron stained joints.
271.0-281.0 ft.: Numerous thin beds of white to pink felsite; parallel to bedding and 2 mm thick. Bedding commonly offset by very thinly spaced en echelon joints that have no infilling.
218.4 ft.: 60 deg. quarte and calcite filled joint. 222.1 ft .: 30 deg. joint. 223.4 ft .: 30 deg chlorite and quartz filled joint.
225.6-225.7 ft.: 50 deg. cleavage.
226.0 ft .: 35 deg . joint. 231.3 ft :: Ash bed with some calcite. 232.1 ft .: 75 deg. quartz and calcite filled joint. 234.0 ft .: 40 deg. quartz and calcite filled joint. 235.7 ft : Granitic clast 70 mm long.
237.5 ft .: 25 deg.
calcite and quartz filled joint.
238.5 ft .: 30 deg.
cleavage.
240.0 ft .: Quartz filled vug, 30 mm in diameter. 242.6 ft .: 35 deg. joint, 1 mm wide.
244.1-246.6 ft.: 80 deg . calcite and quartz filled joint.
$246.5 \mathrm{ft} .: 45 \mathrm{deg}$. joint. 248.0 ft .: 70 deg . calcite and quartz filled joint.
248.5 ft .: 70 deg.
cleavage.
248.9 ft .: Red (felsite) lens 5 mm thick parallel to bedding.
250.0 ft .: Prominent 30
deg. cleavage.
253.5 ft .: 80 deg. joint. 254.0 ft .: Red (felsite) lens offset by 75 deg. joints that are paraliel to cleavage.
256.0-256.6 ft.: Very closely spaced 55 to 75 deg. joints; some infilled with pyrite and calcite. 258.5 ft .: 30 deg.
cleavage.
261.8-262.7 ft.: 75 deg. calcite filled joint. 271.5 ft .: 40 deg. joint. 274.0 ft .: 30 deg .
cleavage.
$274.0 \mathrm{ft} .: 60$ deg. joint. 275.4-275.8 ft.: Fracture zone with numerous joints. $278.0 \mathrm{ft} .: 50 \mathrm{deg}$. joint.
281.0-291.0 ft.:

Cleavage cuts bedding at 65 deg. Bedding, as above, cut by en echelon very closely spaced joints.
$282.5 \mathrm{ft} .: 65$ deg. joint. $285.0 \mathrm{ft} .: 75 \mathrm{deg}$. quartz with minor calcite filled joint.
$287.6 \mathrm{ft} .: 65 \mathrm{deg}$.
calcite and quartz filled 289.0 ft .: 90 deg.

Sea Floor Elevation: 74.8 ft . Total Depth Drilled: 291.0 ft.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR Sea Floor Elevation: 74.8 ft . CLIENT: Massachusetts Water Resources Authority Coordinates: N: 469336.18ft. E: 746707.27ft.


NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=\mathbf{1 0 - 5} \mathrm{cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

FIELD TEST BORING RECORD COVER SHEET


## NOTES

1. The coordinate system used is the 1927 MASS GRID.
2. Datum is M.D.C.
3. In water borings, the split spoon sampler was driven into the soil by dropping a 175-pound sliding down hole hammer a distance of 4 feet within the borehole.
4. In land based borings the soil sampling method used was the STD Penetration Resistance using a 140 lb . hammer dropping a distance of 30 inches.

| APPROVED | DATE |
| :--- | :---: |
| Me Yettep | $1 / 2 / 90$ |



PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority
Coordinates: N: 487612.25ft. E: 746384.27ft.

| DESCRI |
| :--- |
| MAIN |
| deg. |
| 73.7 ft.: Circulation problems, |
| correspond to drill breaks. |
| 78.2 ft.: Circulation problems, |
| correspond to drill breaks. |
| 80.0-88.8 ft.: Joints with iron oxide |
| staining/weathering. |

$\square$
${ }^{\substack{\text { Depth } \\(\mathrm{ft})}} \mid$

## Árgécicitite iñtérbedided

 WITH SANDY ARGMLITE gray to light gray, hard to med. hard, fresh to slightly weathered; bedding thin to very thin 20 to 40 deg., frequent soft sediment deformation; joints widely to closely spaced, 1 to 5 mm wide, filled with calcite or clay, 20 to 70 deg. 111.9-1.12.3 ft.: Fractured zone, with clay, pyrite and numerous joints. 119.1-127.1 ft.: 45 deg. hairline joints filled with calcite.129.0-139.0 ft.: All core breaks due to drilling or hammering.
139.0-149.0 ft.: Numerous clay filled bedding plane separations.
139.5 -143.8 ft.: 50 to 70 deg. clay filled joints.
deg.
70.0-71.0 ft.: Slumped
bedding.
$72.0-74.7 \mathrm{ft}$.: Slumped bedding
77.0-79.7 ft.: 30 deg . calcite and quarte filled joints, 1 to 2 mm wide. 78.4 ft .: Slumped
bedding.
80.8-82.2 ft.: Fracture zone with numerous filled fractures.
$83.0 \mathrm{ft} .: 70$ deg. quartz and calcite filled joint. 86.5 ft .: 25 deg. calcite filled joint.
87.1 ft.: 60 deg. calcite filled joint.
90.4 ft .: Clasts of light gray argillite in matrix of dark gray argillite. $92.1 \mathrm{ft}:: 35$ deg. calcite filled joint.
94.0 ft .: 85 deg. calcite
filled joint.
$95.1 \mathrm{ft} .: 85$ deg. calcite filled joint.
96.0 ft.: 30
$96.0 \mathrm{ft}:$ : 30
filled joint.
filled joint.
96.9-97.6 ft.: Argillite, slightly altered with iron oxide staining along closely spaced 50 deg. bedding plane
separations.
separations.
$98.0 \mathrm{ft} .: 30$ deg. calcite filled joint.
100.0 ft .: 20 deg .
calcite filled joints
100.9-101.4 ft.: Eight 30 to 35 deg. joints coated with clay 102.9 ft .: Slumped
bedding.
104.6 ft .: 35 deg
calcite and pyrite coated
joint
105.4 ft .: 65 deg
cleavage.
107.8-108.5 ft.:

Fracture zone.
111.1 ft .: 30 deg numerous joints. 112.2 ft :: 45 deg . clay coated joint.
114.2-114.8 ft.: Closed
joint with calcite
filling.
115.7 ft .: 50 deg
calcite filled joint.
119.5 ft .: Slumped bedding.
120.3 ft .: 45 deg. joint with smooth surfaces. 120.8 ft .: Slumped bedding
1231 ft .
123.1 ft :
bedding.
126.5 ft .: Slumped bedding.
$135.1 \mathrm{ft} .: 45 \mathrm{deg}$ calcite filled joint. 135.7 ft .: 35 deg . calcite filled joint.

Sea Floor Elevation: 47.6 ft. Total Depth Drilled: 292.0 ft .
T
,T

,

Sea Floor Elevation: 47.6 ft . Total Depth Drilled: 292.0 ft.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{4 8 7 6 1 2 . 2 5 f t}$. E: 746384.27ft.

193.5-197.0 ft.: Argillite interbedded with sandy argillite.
197.0-207.0 ft: Slumped bedding common.
198.6-218.6 ft.: Oriented core.
171.0 ft .: 75 deg . calcite filled joint crosscutting bedding. 173.1 ft .: 75 deg. calcite filled joint crosscutting bedding. 175.3 ft .: 65 deg . calcite filled joint crosscutting bedding. 176.6 ft .: 75 deg. calcite filled joint crosscutting bedding. 177.0 ft .: Bedding orientation changes direction, calcite filled joints, 75 deg. crosscut beds.
beds.
179.0 ft
179.0 ft .: Vertical
cleavage.
182.3 ft .
182.3 ft : 75 deg . calcite filled joint.
182.7 ft .: 30 deg. calcite filled bedding ${ }^{\text {calane separations, } 2}$ to 3 mm wide.
184.1 ft : 70 deg.
calcite filled joint.
184.6 ft .: 30 deg.
calcite filled bedding

DIABASE, light gray to gray, hard to very hard, fresh to slightly weathered; joints close to very close, 1 to 5 mm wide, filled with calcite, clay and quartz, 10 to 40 deg., and 60 to 90 deg.
222.1-223.8 ft.: Preserved core. plane separations, 2 to 3 mm wide.
185.2 ft .: 60 deg.
calcite filled joint.
187.7 ft .: 30 deg. calcite filled bedding plane separations, 2 to 3 mm wide.
191.0 ft . 25 deg .
calcite filled joint.
191.5 ft .: 60 deg .
calcite filled bedding plane separation. plane separat
197.0 ft .: 45 deg. calcite and quartz filled joint.
198.5 ft .: 60 deg . calcite vein 10 mm wide. 199.2 ft .: 60 deg . calcite filled bedding plane separation. 200.0 ft .: 20 deg . calcite and quartz filled joint.
202.1 ft .: 20 deg.

NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority
Coordinates: N: 487612.25ft. E: 746384.27ft.


NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except ${ }^{*}$ indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

| GOLDBERG-ZOINO \& ASSOCIATES, INC.BORING | BORING 89-113 |  |
| :--- | :--- | :--- |
| SUMMARY LOG |  |  |

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR Sea Floor Elevation: 47.6 ft . CLIENT: Massachusetts Water Resources Authority Total Depth Drilled: 292.0 ft. Coordinates: N: 487612.25ft. E: 746384.27ft.


NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except *indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

## FIELD TEST BORING RECORD COVER SHEET



PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{4 8 3 4 4 6 . 6 0 f t}$. E: 746503.70ft.


NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority
Coordinates: N: 483446.60ft. E: 746503.70ft.

| DESCRIPTION |  | Depth (ft.) | Elev. <br> (ft.) | REC | RQD | $\begin{aligned} & \text { Point } \\ & \text { Load } \\ & I_{s} 50 \end{aligned}$ | Pressure Test |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MAIN | DETAIL |  |  |  |  |  | $(x=\mathrm{cm} / \mathrm{sec}$ |

## SANDY ARGILLITE

INTERBEDDED WITH FINE
SANDSTONE, light greenish gray to dark gray with 2 to 5 mm wide orange-brown layers parallel to bedding, hard to med. hard, slightly weathered; bedding thin to laminar, 30 to 45 deg., slumped bedding common; joints moderately close to closely spaced, 50 to 75 deg.; some quartz veins, various orientations; numerous bedding plane separations infilled with quartz.
105.0-115.0 ft.: Numerous quartz veins, 3 to 25 mm wide, generally dipping 45 to 70 deg.

Sea Floor Elevation: 96.5 ft . Total Depth Drilled: $\mathbf{3 3 3 . 4} \mathbf{f t}$.

SANDY ARGLLLITE
INTERBEDDED WITH FINE SANDSTONE, light greenish gray to dark gray with 2 to 5 mm wide orange-brown layers parallel to bedding, hard to very hard, slightly weathered to moderately weathered; bedding thin to very thin, 35 to 60 deg., slumped bedding common; joints moderately close to closely spaced, 60 to 85 deg.; some quartz veins (with minor amounts of calcite); numerous bedding plane separations infilled with quartz.
125.0-154.1 ft.: Lighter, sandy quartz rich beds are very hard and the darker, clayey silt, beds are hard to medium hard.
130.7-131.1 ft.: Preserved core. 136.0-142.7 ft.: Numerous quarte veins, 3 to 15 mm wide, various orientations.

TOP OF BEDROCK 78.0 FT.

Roller bit to 85 ft .: 85.0 ft .: 55 deg. cleavage w/iron staining along cleavage planes 88.0 ft .: 45 deg. slickensided joint 89.5 ft .: 60 deg. slumped bedding with slickensides.
90.0 ft : 65 deg. slickensided joint. 91.0 ft .: 70 deg . slickensided joint. $92.0-92.5 \mathrm{ft}$.: 10 to 20 deg. quartz veins. 94.0 ft .: Slumped bedding.
96.0 ft .: 70 deg
cleavage.
$98.5 \mathrm{ft} .: 75$ deg. slickensided joint. 99.2-100.0 ft.: Fracture zone.
100.6-100.8 ft.:

Fracture zone.
102.7-102.9 ft.:

Moderate alteration of argillite.
103.5-104.0 ft.: Pyrite mineralization parallel 40 deg. bedding
103.5-103.8 ft.: Gouge zone.
106.2-106.3 ft.:

Moderate alteration of argillite.
107.5 ft : 55 deg.
cleavage.
110.0 ft .: 50 deg. joint. $110.1 \mathrm{ft}$.45 deg. quartz vein, 25 mm wide.
111.3 ft .: 70 deg. quartz vein, 12 mm wide 112.0 ft .: 50 deg .
cleavage.
115.6-117.9 ft.:
Numerous quartz veins 7 to 15 mm wide, various orientations, turncate bedding.
117.0 ft : 60 deg. quartz filled joint.
118.8 ft .: Tuffaceous argillite.
119.5 ft .: 15 deg. joint. 120.0 ft .: 70 deg.
cleavage.
121.3 ft : 80 deg. quartz filled joint.
123.2 ft : 70 deg. quartz
filled joint.
124.6-124.7 ft.: Pyrite
mineralization parallel to
50 deg. bedding.
127.0 ft.: 70 deg. quartz

## SUMMARY LOG

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
Sea Floor Elevation: $\mathbf{9 6 . 5} \mathbf{f t}$. CLIENT: Massachusetts Water Resources Authority Total Depth Drilled: 333.4 ft .
Coordinates: $\mathrm{N}: \mathbf{4 8 3 4 4 6 . 6 0 f t}$. E: $\mathbf{7 4 6 5 0 3 . 7 0 f t}$.


NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=\mathbf{1 0 - 5} \mathrm{cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{4 8 3 4 4 6 . 6 0 f t}$. E: 746503.70ft.


NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority
Coordinates: $\mathrm{N}: \mathbf{4 8 3 4 4 6 . 6 0 f t}$. E: 746503.70ft.

| DESCRIPTIO |
| :--- |
| MAIN |
|  |
| SANDY ARGMLITTE |
| INTERBEDDED WITH FINE |
| SANDSTONE, light greenish gray to |
| dark gray, hard to very hard, slightly |
| weathered; bedding thin to medium, |
| 35 to 55 deg. slumped bedding |
| common with steeper dips; joints |
| moderately close, 55 to 80 deg.; |
| occasional quart veins, various |
| orientations; numerous bedding plane |
| separations. |

333.4 FT.: END OF BORING

## $255.0 \mathrm{ft} .: 60 \mathrm{deg}$ <br> cleavage.

cleavage. 60 deg . quartz
256.3 ft:
filled joint, 4 mm wide,
filled joint, 4 mm wide,
crosscutting bedding.
256.4-257.2 ft.:

Fracture zone.
257.1 ft .: 60 deg. quartz
filled joint, 4 mm wide,
crosscutting bedding.
260.0-264.0 ft.: Many
sandstone beds.
262.6-264.2 ft.: 60 deg.
calcite filled joints.
264.4-264.8 ft.:

Slumped bedding.
266.4-267.4 ft.:

Sandstone bed.
268.0 ft .: 60 deg .
cleavage.
272.0 ft .: 55 deg.
cleavage.
Fracture zone.
277.0-280.0 ft.:

Numerous sandstone
beds.
280.7-282.0 ft.: 80 deg.
joint, 15 mm wide,
infilled with quartz and calcite.
282.0-283.0 ft.: 70 deg. quartz filled joint. 284.2 ft : 45 deg .

Sea Floor Elevation: 96.5 ft . Total Depth Drilled: $\mathbf{3 3 3 . 4} \mathbf{f t}$. slickensided bedding plane separations.
285.5 ft .: 60 deg.
cleavage.
286.6-289.0 ft.:

Slumped bedding.
289.0 ft .: 65 deg.
cleavage.
293.5 ft .: 45 deg .
cleavage.
295.0 ft .: 45 deg .
cleavage.
299.0 ft .: Vertical sandstone bed 20 mm wide.
304.4-308.0 ft.:

Numerous sandstone
beds.
306.9 ft .: 10 deg.
calcite and quartz vein.
$307.0-308.0 \mathrm{ft} .: 85 \mathrm{deg}$.
fracture zone with
slickensides.
310.0 ft .: 75 deg. quartz
and calcite filled joint.
311.0-313.4 ft.:

Fracture zone adjacent
to 75 deg . joints.
$313.0-317.0 \mathrm{ft} .: 85 \mathrm{deg}$.
fracture zone with
quartz and calcite
infilling.
315.4 ft : Fracture zone.
316.0 ft .: 50 deg .
cleavage.
317.0-323.4 ft.:

Conglomeratic
sandstone, slumped
bedding.
319.0 ft .: 45 deg.

NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

| GOLDBERG-ZOINO \& ASSOCIATES, INC. BORING | BORING 89-114 |
| :--- | :--- |
| SUMMARY LOG |  |

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR Sea Floor Elevation: 96.5 ft . CLIENT: Massachusetts Water Resources Authority Total Depth Drilled: $\mathbf{3 3 3 . 4} \mathbf{f t}$.
Coordinates: N: 483446.60ft. E: 746503.70ft.


NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

FIELD TEST BORING RECORD COVER SHEET

|  |  | $\begin{gathered} \text { BORING NO. } \\ 89-115 \end{gathered}$ |
| :---: | :---: | :---: |
| ```SITE ``` | $\begin{gathered} \text { J.O. NO. } \\ \text { U11305 } \end{gathered}$ | SHEET <br> 1 OF 1 |
| COORIDNATES N-S 473079.7 | 746187.6 |  |
| SEAFLOOR ELEVATION 74.3 |  |  |
| INCLINATION Vertical INSPECTOR Watson, Grimes |  |  |
| DATE: START/FINISH 9/05/89 / 9/09/89 |  |  |
| CONTRACTOR/DRILLER Warren George/Gregory, Tirro |  |  |
| DRILLING BARGE WGI 90 |  |  |
| WATER DEPTH _31.4 (FT) DRILL RIG TYPE Failing 1500 |  |  |
| ELEVATION TOP OF BEDROCK -20.7 (FT) |  |  |
| TOTAL DEPTH DRILLED 288.0 (FT) |  |  |
| METHODS : |  |  |
| DRILLING SOIL Tri-cone rollerbit |  |  |
| SAMPLING SOIL Split-spoon sampler |  |  |
| DRILLING ROCK Roller bit, continuous HQ wireline coring |  |  |
| SPECIAL TESTING OR INSTRUMENTATION Oriented coring, |  |  |
| SUMMARY |  |  |
| NUMBER SPLIT BARREL SAMPLES [11 |  |  |
| NOTES |  |  |
| 1. The coordinate system used is the 1927 MASS GRID. |  |  |
| 3. In water borings, the split spoon sampler was driven into the soil by dropping a 175-pound sliding down hole hammer a distance of 4 feet within the borehole. <br> 4. In land based borings the soil sampling method used was the STD Penetration Resistance using a 140 lb. hammer dropping a distance of 30 inches. |  |  |
|  |  | $\begin{aligned} & \text { DATE } \\ & 1 / 2 / 50 \end{aligned}$ |

## BORING

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{4 7 3 0 7 9 . 7 2 f t}$. E: 746187.63ft.


NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except ${ }^{*}$ indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: N: 473079.72ft. E: 746187.63ft.


NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ** = SOIL, Down Hole Hammer/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority
Coordinates: N: 473079.72ft. E: 746187.63ft.
CoSCRI TO CONGLOMERATIC SANDSTONE, dark gray to light gray, medium hard to very soft, slightly to highly weathered; bedding very thin to medium, 35 to 70 deg., occasionally slumped; joints moderately close to closely spaced 60 to 85 deg.; occasional quartz veins various orientations.
177.8 ft .: Measurement gives 0.8 ft error which was probably distributed over last several recoveries.
188.3-208.3 ft.: Oriented core.
208.0-218.0 ft.: 60 to 70 deg . cleavage.
211.8-212.6 ft.: Preserved core.
218.0 ft .: Bit being used is for harder rock and may result in longer drilling times through intervals of softer rock.
147.0-151.9 ft.: 75 deg. joints crosscutting beds; bedding offsets up to 10 mm along joints. 153.0 ft .: 70 deg .
$153.0 \mathrm{ft} .:$
cleavage.
cleavage.
Fracture zone.
156.4 ft .: Calcite infilling of bedding plane
separation.
Fracture zone with clay filling.
159.2 ft.: 25 mm wide quartz vein.
164.5 ft .: Coarse
sandstone bed
167.8-168.9 ft.: Coarse
sandstone to fine conglomerate.
168.1-169.0 ft.:

Slumped bedding 171.5-171.6 ft.: Coarse sandstone bed.
176.3 ft :: Coarse
sandstone bed.
178.0-179.2 ft.:

Conglomeratic sandstone bed.
181.2 ft .: 30 deg.
cleavage.
187.4-187.6 ft.: Clay zone.
187.9-188.0 ft.: Clay
zone.
188.9-189.1 ft.: Clay
zone.
190.6-191.0 ft.: Clay
zone
191.8-192.0 ft.: Clay
zone.
192.0 ft .: 80 deg .
cleavage.
$194.4 \mathrm{ft} .: 70 \mathrm{deg}$.
cleavage.
cleavage.
196.6-196.8 ft.: Clay
zone.
200.0 ft .: 70 deg
cleavage.
202.0-202.5 ft.:

Fracture zone.
205.0 ft .: 50 deg
cleavage.
$208.2 \mathrm{ft} .: 2$ to 3 cm diameter granitic clast.
216.7 ft .: 1 to 2 cm diameter sandstone diame
219.0 ft .: 80 deg .
calcite vein
220.0 ft .: 75 deg. cleavage.

Sea Floor Elevation: 74.3 ft .
Total Depth Drilled: 288.0 ft.

## BORING SUMMARY LOG

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority
Coordinates: N: 473079.72ft. E: 746187.63ft.


NOTES: Packer Test, transducer monitored double packer, $K=\mathbf{1 0 - 5} \mathbf{~ c m} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except ${ }^{*}$ indicates axial. ${ }^{* *}=$ SOIL, Down Hole Hammer/Recovery in inches.

FIELD TEST BORING RECORD COVER SHEET


## SUMMARY

SOIL DRILLED $\begin{aligned} & 156.6 \quad(\mathrm{FT}) \\ & \text { NUMBER SPLIT } \\ & \text { BARREL SAMPLES }\end{aligned} \begin{aligned} & \text { ROCK CORED } \\ & 15\end{aligned} \quad 186.5$ (FT)

## NOTES

1. The coordinate system used is the 1927 MASS GRID.
2. Datum is M.D.C.
3. In water borings, the split spoon sampler was driven into the soil by dropping a 175-pound sliding down hole hammer a distance of 4 feet within the borehole.
4. In land based borings the soil sampling method used was the STD Penetration Resistance using a 140 lb . hammer dropping a distance of 30 inches.


PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority
Coordinates: N: 490630.90ft. E: 746709.30ft.


NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected at 55 mm standard, diametric except ${ }^{*}$ indicates axial. ${ }^{* *}=$ SOIL, SPT/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: N: 490630.90ft. E: 746709.30ft.


NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected at 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, SPT/Recovery in inches,

GOLDBERG-ZOINO \& ASSOCIATES, INC.

## SUMMARY LOG

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{4 9 0 6 3 0 . 9 0 f t}$. E: $\mathbf{7 4 6 7 0 9 . 3 0 f t}$.
MAIN
dense, brown (SW),
$151.0-182.5$ ft.: Sand washing into
hole during drilling, therefore,
grouted hole to hold back sand and
drilled through grout.

ARGILLITE, dark gray hard, slightly weathered; bedding thin to laminar 20 to 50 deg., occasional slumped bedding with steeper dips, up to 90 deg.; joints mod. close to closely spaced, 20 to 60 deg.,
occasionally steeper to 90 deg.; many core breaks are along bedding plane separations and have clean surfaces. Most joints are filled with calcite.
158.0 ft .: Metal from roller bit in hole; chewed up coring bit.
164.5-172.5 ft.: Many bedding plane separations, are slickensided dip at 20 to 40 deg.
172.5-182.5 ft.: Abundant slumped bedding dips 60 to 90 deg.
202.5-212.5 ft.: Most core breaks due to drilling.
216.9-217.1 FT.: No recovery.
217.1-218.3 ft.: FELSITE, green
massive, mod. weathered, pyrite
mineralization
218.3-222.5 ft.: Poor recovery,
missing 2.5 ft . of core.
222.5-232.5 ft.: Broken core with clay

## TOP OF BEDROCK

 156.6 FT.Roller bit to 158.0 ft . 159.6-160.4 ft.: 40 deg. calcite vein.
160.0 ft .: 20 deg .
calcite filled joint,
calcite filled joint
160.5 ft .: 50 deg. iron stained bedding plane separation.
161.5-164.5 ft.; 70 deg. cleavage.
cleavage. 85 deg
165.1 ft : 85
165.1 ft :: 85 deg.
169.3-170.4 ft.:
microfaulting adjacent to 1 to 2 mm wide joints 171.3 ft .: 90 deg. calcite filled joint.
171.5 ft .: 30 deg.
calcite vein, 5 mm wide. 172.5-174.5 ft.: 80 deg. calcite filled and slickensided joint. 174.7 ft .: 45 deg . iron stained joint.
176.2 ft .: Conjugate 40 deg. calcite and pyrite filled joints.
177.9 ft :: 80 deg . calcite filled joint. 184.0 ft .: 25 deg . calcite filled joint. 185.2 ft .: 50 deg. calcite filled joint. 186.0 ft .: 70 deg . calcite filled joint with microfaulting and slickensided subsidiary joints.
189.4 ft .: 50 deg calcite filled joint. 191.4 ft .: 90 deg . cleavage.
$191.6 \mathrm{ft} .: 60$ deg. calcite filled joint.
193.4 ft .: 80 deg .
cleavage.
$193.5 \mathrm{ft}: 90 \mathrm{deg}$.
slumped bedding. 194.0-196.5 ft.: $40-45$ deg. calcite filled joints crosscutting
bedding.
199.5 ft : 55 deg. calcite filled joint. 200.3 ft .: 50 deg. calcite filled joint. 203.1 ft .: 70 deg. calcite filled joint. 205.1 ft .: 30 deg . calcite filled joint. 206.4 ft .: 60 deg. calcite filled joint. 207.0 ft .: Slumped bedding.
207.4 ft .: 60 deg. joint

$-\underset{\substack{\text { Depth } \\(f t .)}}{\substack{\text { and }}}$

Sea Floor Elevation: 116.3 ft . Total Depth Drilled: 342.5 ft .

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority
Coordinates: $\mathrm{N}: 490630.90 \mathrm{ft}$. E: 746709.30ft.

| DESCRIPTION |  | $\begin{gathered} \text { Depth } \\ (\mathrm{ft} .) \end{gathered}$ | Elev. <br> (ft.) | REC | RQD | Point Load $\mathrm{I}_{\mathrm{s}} \mathbf{5 0}$ | Pressure Test |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MAIN | DETAIL |  |  |  |  |  | $\begin{aligned} & K=\mathrm{cm} / \mathrm{sec} \\ & (\mathbf{x} 0.00001) \end{aligned}$ |

242.5-252.5 ft.: Argillite interbedded with Sandy Argillite beds ( 1 to 2 cm thick).
253.7-255.0 ft.: Light greenish gray, diabase with chlorite alteration.
255.0 ft .: 1.5 feet of core not
recovered.
DIABASE, dark green to black
hard, slightly weathered; massive;
joints closely spaced, 30 to 50 deg. and 60 to 80 deg.
271.0-304.7 ft.: Most joints are infilled with calcite and chloritoid and are slickensided
283.3-287.3 ft.: Oriented core.
293.3-295.3 ft.: Oriented core.
with 7 clean 40 racaces. slickensided joint with adjacent calcite veins, various orientations. 207.9 ft .: 50 deg. clay coated joint
209.9 ft .: 30 deg .
calcite vein parallel to bedding.
210.4 ft .: 30 deg calcite vein parallel to bedding.
$212.5 \mathrm{ft} .: 35$ deg. clay coated bedding plane separation.
213.5 ft :: Pyrite mineralization
213.6 ft .: 25 deg . clay coated bedding plane separation
214.0 ft : 90 deg . slumped bedding. 217.9 ft : 40 deg. clay and pyrite coated joint. 219.4 ft .: 70 deg . calcite filled joint 220.1 ft : 50 deg . calcite filled joint 223.3 ft .: 40 deg . slickensided bedding plane separation. 224.5 ft .: 70 deg. slumped bedding. 225.1 ft .: 35 deg . calcite filled joint 226.2 ft .: 90 deg. calcite filled joint. 226.8 ft : 65 deg . calcite filled joint 227.3 ft .: 60 deg. calcite filled joint 228.3 ft .: Fracture zone adjacent to 80 deg. iron stained and clay filled joint.
229.3 ft .: 65 deg . calcite filled joint. 230.1 ft .: 60 deg . calcite filled joint. 231.4 ft :: 50 deg . calcite filled joint. 232.3 ft : 55 deg. calcite filled joint. 232.5-234.8 ft.: 70 to 85 deg. clay and pyrite coated joints.
235.8 ft coints. 70 de 235.8 ft t: 70 deg. calcite filled joint
238.8 ft : 75 deg. calcite filled joint. 239.4 ft.: 40 deg. calcite filled joint. 240.1 ft .: 65 deg . calcite filled joint. 241.3 ft .: 60 deg . calcite filled joint. 243.5 ft .: 45 deg . calcite filled joint. 244.2 ft : Felsite clast. 244.3 ft : 45 deg . slickensided bedding plane separation 245.1 ft .: 60 deg. calcite filled joint.

Sea Floor Elevation: $\mathbf{1 1 6 . 3} \mathbf{f t}$. Total Depth Drilled: $\mathbf{3 4 2 . 5} \mathbf{f t}$.
and pyrite (fault zone).
ARGlluITE, dark gray, hard slightly to mod. weathered; bedding thin to laminar, 25 to 60 deg.
occasionally massive; joints close to very closely spaced, 35 to 90 deg.; most joints are filled with calcite and most bedding plane separations have rough surfaces.
234.0-236.5 ft.: FELSITE, light greenish gray, massive, broken core.

## SUMMARY LOG

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority
Coordinates: N: 490630.90ft. E: 746709.30ft.

ARGILLITE, dark gray to black with occasional light gray (Sandy Argillite) beds, hard, slightly weathered; bedding thin to very thin, 35 to 60 deg., occasional slumped bedding with steeper dips up to 90 deg.; joints moderately to very closely spaced, dip angles, generally 15 to 35 deg. and 65 to 90 deg.; most joints filled with calcite.

| DESCRIPTIO |
| :---: |
| MAIN |
|  |
| 304.7-312.5 ft.: Core breaks are along <br> bedding plane separations and 15 deg. <br> joints. | bedding plane separations and 15 deg .

joints. joints.
|
24
2
2
2
2
2

2473 filed joint.
calcite filled joint.
$248.1 \mathrm{ft} .: 40 \mathrm{deg}$.
calcite band, parallel to bedding.
250.0 ft .: Calcite and pyrite bed parallel to 40 deg. bedding, 12 mm thick.
250.3 ft .: 65 deg . clay and pyrite coated joint. 250.6 ft .: 50 deg. quartz and calcite vein, 12 mm wide.
251.2 ft.: 85 deg.
calcite filled joint.
252.4 ft .: 85 deg.
$342.5 \mathrm{ft} .:$ END OF BORING

Sea Floor Elevation: 116.3 ft . Total Depth Drilled: $\mathbf{3 4 2 . 5} \mathbf{f t}$.
calcite filled joint.
$253.1 \mathrm{ft} .: 10 \mathrm{deg}$.
calcite filled joint with
smooth surfaces.
263.1 ft .: 65 deg.
calcite filled joint.
264.2 ft .: 65 deg .
calcite filled joint.
267.5 ft .: 60 deg. clay
coated joint.
273.0 ft .: 70 deg. joint.
274.5 ft :: 30 deg
mylonitic joint.
276.1 ft .: 45 deg . joint.
$277.5 \mathrm{ft} .: 60 \mathrm{deg}$. joint.
279.8 ft .: 45 deg. joint.
281.0 ft .: 45 deg. joint.
283.0 ft .: 40 deg. joint.
283.0 ft .: 40 deg Joint.
284.1 ft .: 90 deg. joint.
285.3 ft .: 40 deg .
mylonitic joint.
286.0 ft .: 30 deg. joint.
287.1 ft .: 60 deg. joint.
288.0 ft .: 90 deg. joint.
$289.0 \mathrm{ft} .:$
$289.1 \mathrm{ft} .:$
60

deg. joint.
$289.1 \mathrm{ft} .:$
290
60
deg. joint.
20
deg. joint.
290.3 ft .: 50 deg. joint.
291.5 ft .: 20 deg. joint.
291.8 ft .: 30 deg . joint.
292.5-295.8 ft.: 30 deg.
joints with smooth
surfaces.
295.8-296.5 ft.: 30 to 45
deg. joints.
$299.0 \mathrm{ft} .: 75 \mathrm{deg}$. joint.
300.3 ft .: 30 deg .
mylonitic joint.
301.0-302.5 ft.: Very
close crossing 45 deg.
joints.
302.8 ft .: 65 deg.
calcite filled joint.
303.4 ft : 60 deg.
calcite filled joint.
304.7 ft .: 65 deg .
calcite and pyrite filled joint, 10 mm wide;
occurs at contact of
occurs at contact of
diabase and argillite.
306.1 ft .: 60 deg.
calcite and quartz filled
joint.
308.1 ft .: 70 deg .
calcite and quartz filled
NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected at 55 mm standard, diametric except ${ }^{*}$ indicates axial. ${ }^{* *}=$ SOIL, SPT/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: 490630.90 \mathrm{ft}$. E: 746709.30 ft .

| DESCRIPTION |  | $\begin{gathered} \text { Depth } \\ \text { (ft.) } \end{gathered}$ | Elev. <br> (ft.) | REC | RQD | Point Load $\mathrm{I}_{\mathrm{s} 50}$ | Pressure Test $\mathrm{K}=\mathrm{cm} / \mathrm{sec}$ (x 0.00001) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MAIN | DETAIL |  |  |  |  |  |  |
|  | \$uint 6 ft .: 65 deg. calcite and quartz filled joint cuts across 80 deg . joint at 310.2 ft . 310.1-312.5 ft.: 90 deg. bedding. 310.2 ft .: 85 deg . calcite and quartz filled joint, 2-4 mm wide. 311.4 ft .: 15 deg . calcite and quartz filled joint. <br> 312.1 ft .: 15 deg . calcite and quartz filled joint. <br> 312.7 ft .: 35 deg. calcite filled joint, 12 mm wide. <br> 313.0 ft .: 35 deg. quartz and calcite filled joint, 5 mm wide. <br> 313.3 ft : 55 deg . slumped bedding. <br> 313.8 ft :: 35 deg. quartz filled joint, 35 mm wide. 317.5 ft .: 80 deg . calcite filled joint. 318.6 ft .: 50 deg . calcite and quartz filled joint, 10 mm wide. 319.4 ft .: 60 deg . calcite filled joint. <br> 320.1 ft .: 70 deg. quartz filled joint. <br> 322.5 ft .: 70 deg . calcite filled joint. 322.9-323.1 ft.: Calcite bed. <br> 323.1 ft .: 80 deg . calcite filled joint. 323.9 ft .: 90 deg . calcite filled joint. 325.1 ft .: 40 deg. calcite filled joint. 326.2 ft .: 30 deg . calcite filled joint. 327.1 ft .: 30 deg. calcite and quartz filled joint. <br> 328.5 ft .: 50 deg . calcite filled joint. 329.4 ft .: 30 deg . calcite and quartz filled joint. <br> 331.0 ft .: 35 deg . calcite filled joint. 332.1 ft .: 30 deg . calcite filled joint. 332.5 ft .: 60 deg. calcite filled joint. 333.4 ft .: 70 deg . calcite filled joint, 3 mm wide. <br> 333.7-334.3 ft.: 50 deg. fracture w/calcite and clay infilling. <br> 338.8-342.0 ft.: 40-85 deg. calcite filled joints, $4-10 \mathrm{~mm}$ wide. |  |  |  |  |  |  |

NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected at 55 mm standard, diametric except ${ }^{*}$ indicates axial. ${ }^{* *}=$ SOIL, SPT/Recovery in inches.

FIELD TEST BORING RECORD COVER SHEET


SUMMARY
$\begin{array}{cccc}\text { SOIL DRILLED } \\ \text { NUMBER SPLIT } \\ \text { BARREL SAMPLES } & \text { (FT) } & \text { ROCK } \\ 15\end{array}$ CORED $\quad 181.3 \quad$ (FT) NUMBER SPLIT BARREL SAMPLES 15

NOTES

1. The coordinate system used is the 1927 MASS GRID.
2. Datum is M.D.C.
3. In water borings, the split spoon sampler was driven into the soil by dropping a 175-pound sliding down hole hammer a distance of 4 feet within the borehole.
4. In land based borings the soil sampling method used was the STD Penetration Resistance using a 140 lb . hammer dropping a distance of 30 inches.


PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{4 9 1 1 4 9 . 6 0 f t}$. E: 746593.50ft.


NOTES: Packer Test, transducer monitored double packer, $K=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except ${ }^{*}$ indicates axial. ${ }^{* *}=$ SOIL, SPT/Recovery in inches.

## BORING SUMMARY LOG

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: N: 491149.60ft. E: 746593.50ft.


[^1] corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, SPT/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority
Coordinates: N: 491149.60ft. E: 746593.50ft.

| DESCRIPTION |  | $\begin{gathered} \text { Depth } \\ (\mathrm{ft.}) \end{gathered}$ | $\underset{(\mathrm{ft} .)}{\text { Elev. }}$ | REC | RQD | Point <br> Load <br> $\mathrm{I}_{\mathrm{B}} 50$ | Pressure <br> Test <br> $\mathrm{K}=\mathrm{cm} / \mathrm{sec}$ $(\times 0.00001)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MAIN | DETAIL |  |  |  |  |  |  |

ARGILLITE, dark gray hard, slightly weathered; bedding thin to laminar, 30 to 45 deg., occasionally up to 60 deg. dip; joints mod. close to closely spaced, 45 to 90 deg.; numerous bedding plane separations that apparently re-opened during drilling; many bedding plane separations show cleavage and have smooth surfaces.
smooth surfaces.
$153.0-167.0 \mathrm{ft}$.: result of drilling.
160.5-161.8 ft.: Felsite, light
greenish-gray, hard, slightly
weathered.
177.3-181.9 ft.: 30 to 45 deg. bedding plane separations spaced 50 to 65 mm apart, appear to have been recemented prior to drilling.
184.0-192.0 ft.: Numerous 30 to 40 deg. bedding plane separations, spaced 50 to 75 mm apart. 184.3-186.3 ft.: Numerous 90 deg . calcite veins, 1 to 4 mm wide.
191.0 ft :: Broken core jammed core barrel.
192.0-202.0 ft.: Numerous 30 deg. bedding plane separations with smooth and iron stained surfaces, spaced 25 to 100 mm apart.
200.0 ft :: Broken core jammed core barrel.
212.0-222.0 ft.: Numerous bedding plane separations generally along previously healed smooth surfaces.
cleavage.
$148.0-149.5 \mathrm{ft} .: ~$
30 deg. calcite filled and smooth surfaced bedding plane separations.
149.5-151.2 ft.: 60 deg.
calcite filled joints.
151.2-153.0 ft.: 45 to 60 deg. calcite and quartz filled joints.
152.0-153.0 ft.: Calcite veins, various
orientations.
153.0-154.5 ft.: 45 and

80 deg. calcite and
quartz filled joints
154.5-156.0 ft.:

Horizontal to 10 deg.
bedding.
$156.0-158.0 \mathrm{ft} .: 70 \mathrm{deg}$. calcite and quarte filled joints.
158.0-160.2 ft.:

Slumped bedding.
161.3 ft .: 45 deg .
slickensided and calcite filled joint.
161.4 ft :: 30 deg . iron stained bedding plane separation.
162.0-163.0 ft.: 90 deg. calcite filled fracture with 5 mm displacement 163.3-164.0 ft.: 90 deg. calcite and quartz filled joint, up to 12 mm wide. 164.5-165.0 ft.: 70 deg . iron stained joint.
168.0 ft .: 60 deg . iron
stained joint.
170.1 ft .: Fracture zone, 170.1 ft
173.5-175.8 ft.: 90 deg . fractures and joints, up to 4 mm wide with some smooth surfaces.
177.3 ft .: 40 deg .
177.3 ft : 40 deg.
slickensided bedding plane separation. 185.5 ft .: 40 deg. clay coated bedding plane separation.
189.0-190.1 ft.: Closely spaced 70 deg. smooth, iron stained joints. 190.4 ft .: Gouge zone with clay filling. 192.5-193.0 ft.: High angle calcite veins. 196.4-198.0 ft.: 90 deg calcite and quartz filled joint with
2 mm displacement of bedding planes adjacent to joint.
199.7-202.2 ft.: 80 to 90 deg. slickensided joint. 207.5-209.0 ft.: 90 deg . calcite and quartz filled joint.
212.0-212.7 ft.: 90 deg . calcite quartz filled joint, 1 to 3 mm wide, some fractures adjacent to joint.

Sea Floor Elevation: $\mathbf{1 1 6 . 3} \mathbf{f t}$. Total Depth Drilled: $\mathbf{3 2 6 . 3} \mathbf{f t}$.
,

## BORING SUMMARY LOG

BORING 89-117

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority
Coordinates: N: 491149.60ft. E: 746593.50ft.

| MESC |
| :---: |
| MAIN |
|  |
| ARGILLITE dark gray, hard, |
| slightly weathered begding very |

slightly weathered, bedding yery thin to laminar, generally 30 to 40 deg. occasionally bedding is massive with 45 to 90 deg. dip, joints mod. close to closely spaced, 40 to 90 deg., rarely 10 to 30 deg. Numerous bedding plane separations are along smooth, previously healed surfaces that appear to have re-opened during drilling.
213.4 ft .: 30 deg . calcite filled bedding plane separation, 5 mm wide.
214.1 ft .: 45 deg. quartz and calcite filled joint, crosscutting bedding. crosscutting
215.8 ft .: 30 deg . 215.8 ft .: 30 deg .
calcite filled bedding plane separation, 7 mm wide.
216.6-216.8 ft.: 90 deg. $\underset{\substack{\text { Depth } \\ \text { (ft.) }}}{\text { Din }}$
262.0 ft :: Oriented core run aborted, core too broken.
263.3-267.2 ft.: Massive fabric.
265.6-266.8 ft.: Preserved core.
271.2-272.0 ft.: Preserved core.
282.0-292.0 ft.: Very thin bedding generally 30 to 45 deg. dip except 10 deg. dip at 284.0-285.0 ft. and 289.0-289.5 ft.

DIABASE, green, hard, slightly weathered, massive with many calcite veins.
clean fractures.
217.0 ft : 60 deg . iron stained joint
crosscutting bedding. 217.7-218.5 ft.: 45 deg . calcite filled joints, crosscutting bedding, 1 to 3 mm wide.
220.3-221.7 ft.: 90 deg.
clean fractures.
222.2 ft .: 30 deg . clean
joint, crosscutting
bedding.
223.1 ft .: 80 deg .
cleavage.
227.4-229.7 ft.: Closely spaced 30 deg. calcite
filled bedding plane separations
230.0 ft : 50 deg .
calcite filled joint crosscutting bedding. 231.5 ft .: 20 and 70 deg. crosscutting joint sets, calcite filled
231.5 ft : 60 deg . calcite filled fracture, up to 15 mm of
displacement.
231.8 ft .: 60 deg.
calcite and quartz filled joint.
232.4-234.5 ft.: Many closely spaced low angle calcite veins,
crosscutting, bedding.
$233.2 \mathrm{ft} .: 60 \mathrm{deg}$. calcite filled joint, crosscutting bedding. 234.2 ft .: 10 deg . calcite and quartz filled joint with slickensides. 235.2-235.7 ft.: 90 deg calcite and quartz filled joint.
235.7 ft .: 30 deg . calcitywinted bedding plane separation, 3 mm thick.
239.0-239.4 ft.: 60 deg calcite filled fracture with rough surfaces. 241.0 ft .: 70 deg . fracture with trace of clay filling.
241.4-241.8 ft.: Very closely spaced calcite filled joints and veins. 242.0-242.7 ft.: 90 deg. fracture with rough surfaces; also, 60 deg . very closely spaced very closely spaced
calcite and quartz filled

Sea Floor Elevation: 116.3 ft . Total Depth Drilled: $\mathbf{3 2 6 . 3} \mathbf{f t}$.
$\qquad$

## SUMMARY LOG

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{4 9 1 1 4 9 . 6 0 f t}$. E: $\mathbf{7 4 6 5 9 3 . 5 0 f t}$.

| DESCRIPTION |  | $\underset{\substack{\text { Depth } \\(\mathrm{ft} .)}}{ }$ | $\begin{gathered} \text { Elev. } \\ (\mathrm{ft.}) \end{gathered}$ | REC | RQD | Point Load $\mathrm{I}_{8} 50$ | $\begin{aligned} & \text { Pressure } \\ & \text { Test } \\ & \mathrm{K}=\mathrm{cm} / \mathrm{sec} \\ & (\times 0.00001) \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MAIN | DETAIL |  |  |  |  |  |  |
| 302.3-312.3 ft.: Oriented core. ARGILLITE, interbedded, dark gray Argillite and light gray Sandy Argillite, hard to med. hard, slightly weathered, bedding very thin, 30 to 75 deg.; joints close to very closely spaced, 30 to 80 deg. <br> 326.3 ft .: 20 ft . of rod and 10 ft . of core barrel fell into hole. | joints. <br> 242.8-244.4 ft.: Quartz veins, various orientations. <br> 242.9 ft .: 60 deg . <br> fractured joint with <br> rough surfaces. <br> 244.9-245.0 ft.: <br> Fracture zone. <br> 246.0 ft .: 30 deg. <br> calcite and quartz vein, 12 mm wide. <br> 246.6 ft .: 30 deg. <br> calcite and quartz vein, 25 mm wide. <br> 247.0-248.9 ft.: <br> Slumped bedding. <br> 249.7 ft .: 60 deg. <br> fractured joint. <br> 252.0-253.0 ft.: 90 deg . calcite filled fracture, 3 mm displacement; also, 90 deg. calcite veins. 252.3 ft .: 70 deg . <br> calcite and quarte filled joint. <br> 254.5 ft .: 60 deg. <br> closely spaced calcite <br> filled veins and joints; <br> 90 deg. fracture with 4 <br> mm displacement. <br> 257.1 ft .: 30 deg . <br> bedding plane separation <br> infilled with 10 mm of <br> recemented brecciated <br> argillite. <br> 258.9 ft : 60 deg . <br> fracture with 5 mm of <br> displacement. <br> 259.0-262.0 ft.; 60 deg. <br> closely spaced joints <br> w/smooth surfaces <br> 262.0-263.3 ft.: Very <br> thin bedding with 45 to <br> 60 deg . dip. <br> 262.3-263.2 ft.: 30 deg. <br> closely spaced calcite <br> veins, 1 to 3 mm wide <br> and crosscutting 30 deg . <br> calcite filled joint. <br> 265.1-265.6 ft.: 70 deg. <br> joint with smooth, clean <br> surfaces. <br> 268.1-268.6 ft.: 80 deg. calcite filled fracture, <br> mm wide. <br> 268.9-270.6 ft.: 90 deg. <br> calcite filled fracture <br> with 14 mm <br> displacement. <br> 270.7 ft .: 60 deg . <br> calcite filled joint. <br> filled joint deg. clay <br> surfaces. <br> 273.7 ft .: 90 deg. clean <br> fracture with 14 mm <br> displacement. <br> 276.9 ft .: 80 deg. <br> calcite vein, 10 mm <br> wide. <br> 277.2-279.5 ft.: 45 to 60 <br> deg. clean joints with <br> smooth surfaces <br> 278.0-279.5 ft.: 30 to 75 |  | A 185 | V№m |  | 923 <br> 923 |  |

NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, SPT/Recovery in inches.

GOLDBERG-ZOINO \& ASSOCIATES, INC.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: 491149.60 \mathrm{ft}$. E: 746593.50ft.


NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test corrected to 55 mm standard, diametric except * indicates axial. ${ }^{* *}=$ SOIL, SPT/Recovery in inches.

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{4 8 4 4 8 8 . 8 5 f t}$. E: 746536.59ft.


NOTES: 1. Dashed lines in description column indicate approximate vertical location of change in sample description when the change is gradual. 2. Asterisk (*) indicates not a standard ( $300 \#$ hammer used).

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{4 8 4 4 8 8 . 8 5 f t}$. E: 746536.59ft.

| MESCRIPT |
| :--- |
| THL, CLAYEY SILT, <br> medium sand, $15 \%$ <br> olive-gray. |
| THL gravel, hard, |
| $10 \%$ fLAYEY SIL | $10 \%$ fine to medium sand, hard, olive gray.

TILL, CLAYEY SILT, $15 \%$ fine to medium sand, $20 \%$ gravel, hard, olive-gray.

TILL, CLAYEY SILT, $15 \%$ fine to coarse sand, $25 \%$ gravel, hard, olive-gray.
90.3 ft .: Top of Bedrock

ARGILLITE, dark gray, medium hard to hard, slightly weathered; bedding very thin to laminar, 20 to 60 deg. Joints very closely spaced,
hairline to 5 mm in thickness, 10 to 90 deg. with random orientations of joint planes; few bedding plane separations and some veins, generally infilled with and some veins, generally infilled with
calcite, occassionally iron-stained and clay coated. Microfaulting of veins and joints are common.
$96.0-106.0 \mathrm{ft}$.: Microfaulting common.
101.0-101.7 ft.: Joints are
iron-stained and slightly clay coated.
Calcite appears to have "dissolved"
giving a vuggy appearance.
102.9-103.5 ft.: Alternating bands of light and dark gray ARGILLLITE.
109.5-110.6 ft.; Grayish green ARGILLITE.
115.0 ft .: END OF BORING

TILL, CLAYEY SILT, $15 \%$ fine to medium sand, $15 \%$ gravel, hard,

TILL, CLAYEY SILT, $35 \%$ gravel
95.0-96.0 ft.: Calcite infilled joints and veins with random
orientations, hairline to 5 mm in thickness. 97.2 ft .: Iron-stained joint with thin film of clay coating,dipping 85
deg.
98.0 ft : Iron-stained, calcite infilled joint dipping 20 deg.
100.0-101.0 ft.: Steeply dipping iron-stained partially opened joints. 107.1-107.3 ft.: Fracture zone partially recemented with calcite, upper portion is iron-stained. 108.5-110.5 ft.: Open joint and bedding
Dent

- | Depth |
| :---: |
| $(\mathrm{ft})$. |

TOP OF BEDROCK 90.3 FT.

Sea Floor Elevation: 116.5 ft . Total Depth Drilled: 115.0 ft . parting surfaces, spaced approximately 2 to 5 inches apart, are inches apart, are iron-stained and thinly coated with clay, dipping 30 to 60 'deg. 109.5-109.7 ft.: Soft, severly weathered highly fractured ARGILLITE with 20 mm wide zone of clayey material at 109.5 ft . 110.6 ft .: Soft, severely weathered, highly fractured ARGILLITE with 25 to 50 mm wide zone of
clayey-brecciated material.
113.0 ft .: Iron-stained joint dipping 40 deg. with 2 mm clay coating on joint surface.



NOTES: Vane Shear Test-performed @ 52.0 ft . Drilled under Health \& Safety Plan/modified level D from surface to 40 ft. Grouted hole after completion. Fill placed on slope in order to position rig for drilling.















NOTES: Packer Testing - Performed over length of rock boring. Asterisk ( ${ }^{*}$ ) indicates not to standard (300\# hammer used). Preserved core 10.2 ft . Insitu testing 8 ft . away in LDE-46A. PMT-Menard Pressuremeter Test.
Metcalf \& Eddy, Inc.

Project: 1989 LAND BORINGS - DEER ISLAND PROJECT
Client: Massachusetts Water Resources Authority

| $\begin{array}{\|l\|} \hline \text { ELEV. } \\ (\mathrm{ft} .) \end{array}$ | $\left\|\begin{array}{l} \text { DEPTH } \\ (\mathrm{ft} .) \end{array}\right\|$ | SAMPLE |  | $\begin{gathered} \text { BLOUS } \\ \text { RECOVERY } \\ \hdashline \text { ROD } \\ \hline \end{gathered}$ | $\begin{gathered} \text { SPT } \\ \text { VALUE } \end{gathered}$ | $\begin{gathered} \text { USC } \\ \begin{array}{c} \text { SHMgOL } \\ \text { PeN } \\ \text { PRTE } \end{array} \\ \hline \end{gathered}$ | SAMPLE DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | TYPE | No. |  |  |  |  |
|  | 90 |  |  |  |  |  |  |

TILL: Gray silty CLAY matrix, 20-30\% fine GRAVEL; trace medium gravel and trace fine-medium sand.

TILL: As above.

TILL: As above.

FALLING BREAD PERM TEST from 104.0 ft . to 104.5 ft .
SS 22, recovery of sample $r=11$ in.

6 in . COBBLE from 105.5 ft . to 106.0 ft .

LDE-46A, 105.2 ft . to 109 ft .:
Core Till (Face discharge bit w/Split triple tube
NX barrel. Recovered $\&$ preserved 0.7 ft . Penetration rate 1 min./ft.)

SLLT \& SAND: Brown \& mixed with crumbly fragments of shell (wet).
PALLING EREAD PERM TEST from 110.5 ft . to 112.0 ft .

SAND \& SLLT: As above.
FALLING FIFAD PERM TEST from 114.0 ft . to 115.5 ft .

NOTES: Packer Testing - Performed over length of rock boring. Asterisk (*) indicates not to standard (300\# hammer used). Preserved core 10.2 ft . Insitu testing 8 ft . away in LDE-46A. PMT-Menard Pressuremeter Test.


NOTES: Packer Testing - Performed over length of rock boring. Asterisk (*) indicates not to standard (300\# hammer used). Preserved core 10.2 ft. Insitu testing 8 ft . away in LDE-46A. PMT-Menard Pressuremeter Test.





NOTES: Packer Teating - Performed over length of rock boring. Aatersk (") indiestes not to standard (s00\# hammer uced). Preserved core 10.2 A. Insitu testing 6 tt. away in LDE-46A. PMT- Menard Prescuremetor Tast.








PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR CLIENT: Massachusetis Wister Resources Authorify
Coordinates: N : 491572.94 ft . E: 746808.67ft.


NOTES: Obeervation well, so feet deep, installed in borehole by Guild under direction of HMM. Groundwater leval is arfocted by side.




NOTES: Packer Teating - Porformed over length of rock boring. LDE-58 in located on Nut Laland; elevation estimated.
Asterak ( ${ }^{*}$ ) indicates not to standard ( 300 \# hammer used). Inaitu teating 6 n . away in LDE-68A. Presarved core 18.8
t.



NOTES: Packer Testing - Performed over length of rock boring. LDE-68 is located on Nut Island; elevation estimated. Astersk ( ${ }^{*}$ ) indicates not to standard ( $300 \#$ hammer used). Insitu testing 6 ft. away in LDE-58A. Preserved core 18.8 t.







NOTES: Packer Testing - Performed over length of rock boring. LDE-58 is located on Nut Island; elevation estimated.
Asterak ( ${ }^{\circ}$ ) indicates not to standard ( $\mathbf{3 0 0 \%}$ \# hammer used). Inditu testing 6 ft. away in LDE-58A. Preserved core 18.8 ft.



NOTES: Packer Teating - Performed over length of rock boring. LDE-58 is located on Nut Island; elevation estimated.
Asterak ( ${ }^{*}$ ) Indicatea not to atandard ( $\mathbf{3 0 0}$ \# hammer used). Insitu teating 6 f. away in LDE-58A. Preserved core 18.8 f.


NOTES: Packer Teating - Performed over length of rock boring. LDE-E8 in located on Nut Leland; elevation eatimated. Asterak (*) indicates not to atandard (300\# hammer used). Insitu testing 6 ft. away in LDE-58A. Preserved core 18.8 f.


NOTES: Packer Testing - Porformed over length of rock boring. LDE- 68 is located on Nut Lland; elevation eatimated.
Astarsk ( ${ }^{\circ}$ ) Indicates not to atandard ( 500 \# hammer used). Insitu testing 6 t. away in LDE-58A. Preserved core 18.8 f.









PROJECT: INTER-ISLAND CONVEYANCE TUNNEL CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: 2949841.90 \mathrm{ft}$. E: $\mathbf{8 0 3 7 4 9 . 7 0} \mathrm{ft}$.


NOTES: Nine 21 ft . packer tests, injection pressures of 50,100 , and 200 p.s.i. below 300 ft ., $\mathbf{3 0}, \mathbf{6 0}$, and 120 p.s.i. above 300 ft .; Point load tests were diametral, " indicates test perpendicular to bedding, + indicates axial


NOTES: Nine 21 ft . packer tests, injection pressures of 50,100 , and 200 p.s.i. below 300 ft , 30,60 , and 120 p.s.i. above $300 \mathrm{ft} . ;$ Point load tests were diametral, * indicates test perpendicular to bedding, + indicates axial


NOTES: Nine 21 ft. packer tests, injection pressures of 50, 100, and 200 p.s.i. below $300 \mathrm{ft} ., 30,60$, and 120 p.s.i. above $300 \mathrm{ft} . ;$ Point load tests were diametral, *indicates test perpendicular to bedding, + indicates axial


PROJECT: INTER-ISLAND CONVEYANCE TUNNEL
CLIENT: Massachusetts Water Resources Authority
Coordinates: N: 2949841.90 ft. E: 803749.70 ft.


DESCRIP unweathered; bedding mostly slumped; apparent dip quite variable, usually 20 - 80 deg. and 60 - 90 deg.; occasional to some calcite veins, various directions, usually 10 - 30 deg. and 50-60 deg. opposite bedding.
277.0 as sheet 4$\}$
spaced joints - Mod. close to closely separations, pyrite and $\mathrm{FeO}_{2}$ stain deg. opposite bedding.
302.0 to 322.0 - Argillite with Sandy Argillite, dk. gray, mod. hard,
unweathered, bedding similiar as argillite.

E: $|$\begin{tabular}{l}
DETAIL <br>
<br>

| 302.0 to 322.0 - Argillite |
| :--- |
| with Sandy Argillite, dk. |
| gray, mod. hard, |
| unwathered, bedding |
| similiar as argillite. | <br>

\end{tabular}

Sea Floor Elevation: 98.4 ft .
Total Depth Drilled: 442.0 ft .



## METCALF \& EDDY, Inc r8

PROJECT: INTER-ISLAND CONVEYANCE TUNNEL CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{2 9 4 1 6 9 6 . 9 0} \mathrm{ft}$. E: 803751.70 ft .


NOTES: Seven 21 ft . packer tests, injection pressures of 50,100 , and 200 psi below $300 \mathrm{ft} ., 30,60$, and 120 psi. above 300 ft.; Point Load tests were diametral, ${ }^{*}$ indicates test perpendicular to bedding, + indicates axial.

## BORING SUMMARY LOG

PROJECT: INTER-ISLAND CONVEYANCE TUNNEL
CLIENT: Massachusetts Water Resources Authority
Coordinates: N: 2941696.90 ft. E: 803751.70 ft.

| DESCRIPTION |  | $-\begin{gathered} D_{\text {epth }} \\ (\mathrm{ft.}) \end{gathered}$ | RQD | Point Load $1_{8} 50$ | $\begin{aligned} & \text { Pressure } \\ & \text { Test } \\ & \mathrm{K}=\mathrm{cm} / \mathrm{sec} \\ & (\times 0.00001) \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MAIN | DETAIL |  |  |  |  |
| 206.1 to 239.0 - closely spaced joints, 10 - 20 deg. and 65 to 70 deg. opp. bedding, sl. clay coatings; mod. close bedding plane separations, clay coatings. |  | 品 |  | 600 <br> 851 905* <br> 1123 <br> 1438 <br> 773 <br> 256 128* <br> 1019 <br> 675 <br> 542* |  |

NOTES: Seven 21 ft . packer tests, injection pressures of 50,100 , and 200 psi below $\mathbf{3 0 0} \mathrm{ft} ., \mathbf{3 0}, \mathbf{6 0}$, and $\mathbf{1 2 0}$ psi. above 300 ft.; Point Load tests were diametral, *indicates test perpendicular to bedding, + indicates axial.


NOTES: Seven 21 ft . packer tests, injection pressures of 50,100 , and 200 psi below $300 \mathrm{ft} ., 30$, 60 , and 120 psi. above 300 ft.; Point Load tests were diametral, ${ }^{*}$ indicates test perpendicular to bedding, + indicates axial.


NOTES: Seven 21 ft. packer tests, injection pressures of 50,100 , and 200 psi below 300 ft , $\mathbf{3 0}, 60$, and 120 psi. above 300 ft.; Point Load tests were diametral, " indicates test perpendicular to bedding, + indicates axial.


NOTES: Seven 21 ft . packer tests, injection pressures of 50,100 , and 200 psi below $300 \mathrm{ft} ., 30,60$, and 120 psi. above 300 ft.; Point Load tests were diametral, *indicates test perpendicular to bedding, + indicates axial.


PROJECT: INTER-ISLAND CONVEYANCE TUNNEL CLIENT: Massachusetts Water Resources Authority Coordinates: $\mathrm{N}: \mathbf{2 9 3 3 1 7 9 . 6 0} \mathrm{ft}$. E: $\mathbf{8 0 3 6 5 6 . 5 0} \mathbf{f t}$.
 ft.; Point Load Tests were diametral, " indicates test perpendicular to bedding, + indicates axial test.

PROJECT: INTER-ISLAND CONVEYANCE TUNNEL CLIENT: Massachusetts Water Resources Authority
Coordinates: $\mathrm{N}: \mathbf{2 9 3 3 1 7 9 . 6 0} \mathrm{ft}$. E: $\mathbf{8 0 3 6 5 6 . 5 0} \mathbf{f t}$.


NOTES: Four 21 ft . packer tests, injection pressures of 50,100 , and 200 psi below 300 ft ., 30 , 60, and 120 psi above 300 ft.; Point Load Tests were diametral, * indicates test perpendicular to bedding, + indicates axial test.

PROJECT: INTER-ISLAND CONVEYANCE TUNNEL
CLIENT: Massachusetts Water Resources Authority
Coordinates: $\mathrm{N}: 2933179.60$ ft. E: 803656.50 ft.


NOTES: Four 21 ft . packer tests, injection pressures of 50,100 , and 200 psi below 300 ft ., $\mathbf{3 0}, \mathbf{6 0}$, and 120 psi above 300 ft.; Point Load Tests were diametral, *indicates test perpendicular to bedding, + indicates axial test.



## METCALF \& EDDY, Inc rve

## BORING SUMMARY LOG

PROJECT: INTER-ISLAND CONVEYANCE TUNNEL
CLIENT: Massachusetts Water Resources Authority
Coordinates: $\mathrm{N}: \mathbf{2 9 2 8 7 5 9 . 9 0} \mathrm{ft}$. E: $\mathbf{8 0 3 8 3 8 . 9 0} \mathrm{ft}$.

Sea Floor Elevation: 83.4 ft. Total Depth Drilled: 347.0 ft .


NOTES: Eight packer 21 ft . packer tests, injection pressures of 50,100 , and 200 psi below 300 ft ., 30 , 60 , and 120 psi.
above 300 ft .; Point Load tests were diametral, *indicates test perpendicular to bedding, + indicates axial.

PROJECT: INTER-ISLAND CONVEYANCE TUNNEL
CLIENT: Massachusetts Water Resources Authority
Coordinates: $\mathrm{N}: \mathbf{2 9 2 8 7 5 9 . 9 0} \mathrm{ft}$. E: 803838.90 ft .
DESCRIPT mod. hard; unweathered; bedding thin to laminar, when visible, $60^{\circ}$ 90 deg.; numerous high angle quarts
151.0 to 198.0 - Mod. close to widely spaced joint sets with some joint spacing very close, typically $40-60$ deg., many with quarte and chlorite on surfaces.
198.0 to 219.0 - Widely spaced joints.
219.0 to 228.0 - Closely spaced joints, 80 to 75 deg., pyrite coatings and FeO2 stains.

Sea Floor Elevation: 83.4 ft . Total Depth Drilled: 347.0 ft .

NOTES: Eight packer 21 ft . packer tests, injection pressures of 50,100 , and 200 psi below $300 \mathrm{ft} ., \mathbf{3 0}, 60$, and 120 psi.
above 300 ft.; Point Load tests were diametral, * indicates test perpendicular to bedding, + indicates axial.

METCALF \& EDDY, Inc

PROJECT: INTER-ISLAND CONVEYANCE TUNNEL CLIENT: Massachusetts Water Resources Authority Coordinates: N: $\mathbf{2 9 2 8 7 5 9 . 9 0}$ ft. E: $\mathbf{8 0 3 8 3 8 . 9 0} \mathbf{f t}$.


NOTES: Eight packer 21 ft . packer tests, injection pressures of 50,100 , and 200 psi below 300 ft , 30,60 , and 120 psi. above $300 \mathrm{ft.;}$ Point Load tests were diametral, * indicates test perpendicular to bedding, + indicates axial.


NOTES: Eight packer 21 ft . packer tests, injection pressures of 50,100 , and 200 psi below 300 ft . 30 , 60 , and 120 psi. above 300 ft .; Point Load tests were diametral, * indicates test perpendicular to bedding, + indicatea axial.

## GOLDBERG-ZOINO \& ASSOCIATES, INC. BORING <br> SUMMARY LOG

BORING PDE-46

PROJECT: INTER-ISLAND TUNNEL, BOSTON HARBOR
CLIENT: Massachusetts Water Resources Authoricy Coordinates: N: 491572.94 fi . E: 746808.67 ft .


NOTES: Obeervation well, 30 feet deep, inutalled in borehole by Guild under direction of HMM. Groundwater leval is afiocted by lide.

## GUILD DRILLING CO., INC.

100 WATER STREET EAST PROVIDENCE, R 1


Metcalf\&Eddy. Inc.
ADDRESS
Boston, Mass
PROJECT NAME EL Land \& Water Boring fokocation
$\qquad$ REPORT SENT TO above IIslands
SAMPLES SENT TO $\qquad$ Taken at site $\qquad$
$\qquad$ -"
PRONTO-
ground hater observations




LOCATION OF BORING
Long Island


GUILD DRILLING CO., INC. EPORT SENT TO $\qquad$ |PROJ.NO. SAMPLES SENT TO OUR jOB NO



LOCATION OF BORING


Rods -"BW"
Type
Size: D
Heme Wi
Homer Kali OUR JOE NO. 82-24
sheet DATE HOLE NO. L-8

| LINE A STA. |
| :--- |
| OFFSET 3 \#H |
| 1139 |

SURF. ELEV. 113.9
CORE BAR

## LOCATION OF BORING

Long Island


FILE No. U-11305.1



| Sverdrup | ```m Actoolatioe met Jacobs Associates \[ \text { Goldb:rg-Zolno } 8 \text { issociates } \] and Delon Hampton \& Associates``` | DP-5 <br> INTER-ISLAND TUNNEL BOSTON HARBOR | TECTONIC MAP OF BOSTON BASIN AND BLUE HILLS <br> NOV. 1989 <br> FIGURE No. 3.2 |
| :---: | :---: | :---: | :---: |


[^0]:    *Groundwater elevation for the initial structures is the Federal Emergency Management Agency (FEMA) predicted stillwater storm surge elevation, with a return period of 50 years, and for the final structures, it is the FEMA predicted 100-year surge elevation for the year 2100. These groundwater elevations are the LDE determined maximum flooding conditions.

[^1]:    NOTES: Packer Test, transducer monitored double packer, $\mathrm{K}=10-5 \mathrm{~cm} / \mathrm{sec}$ at pressure indicated; Point Load Test

